RNode_Firmware/LoRa.cpp

1486 lines
38 KiB
C++
Raw Normal View History

2018-04-05 18:10:42 +02:00
// Copyright (c) Sandeep Mistry. All rights reserved.
2018-04-26 15:52:43 +02:00
// Licensed under the MIT license.
2023-01-14 00:11:02 +01:00
// Modifications and additions copyright 2023 by Mark Qvist
2018-04-26 15:52:43 +02:00
// Obviously still under the MIT license.
2018-04-05 18:10:42 +02:00
2018-12-01 19:31:51 +01:00
#include "LoRa.h"
2024-01-19 11:08:55 +01:00
#include "Modem.h"
2018-04-05 18:10:42 +02:00
2022-01-14 20:56:10 +01:00
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
2024-01-19 11:08:55 +01:00
#define MCU_NRF52 0x71
2022-01-14 20:56:10 +01:00
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
2024-01-19 11:08:55 +01:00
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
2022-01-14 20:56:10 +01:00
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
2024-01-19 11:08:55 +01:00
#if MODEM == SX1262
#define OP_FIFO_WRITE 0x0E
#define OP_FIFO_READ 0x1E
#define OP_RF_FREQ 0x86
#define OP_SLEEP 0x84
#define OP_STANDBY 0x80
#define OP_TX 0x83
#define OP_RX 0x82
#define OP_PA_CONFIG 0x95
#define OP_SET_IRQ_FLAGS 0x08 // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS 0x02
#define OP_GET_IRQ_STATUS 0x12
#define OP_RX_BUFFER_STATUS 0x13
#define OP_PACKET_STATUS 0x14 // get snr & rssi of last packet
#define OP_CURRENT_RSSI 0x15
#define OP_MODULATION_PARAMS 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS 0xC0
#define OP_TX_PARAMS 0x8E // set dbm, etc
#define OP_PACKET_TYPE 0x8A
#define OP_BUFFER_BASE_ADDR 0x8F
#define OP_READ_REGISTER 0x1D
#define OP_WRITE_REGISTER 0x0D
#define OP_DIO3_TCXO_CTRL 0x97
#define OP_DIO2_RF_CTRL 0x9D
#define OP_CALIBRATE 0x89
#define REG_OCP 0x08E7
#define REG_LNA 0x08AC // no agc in sx1262
#define REG_SYNC_WORD_MSB 0x0740
#define REG_SYNC_WORD_LSB 0x0741
#define REG_PAYLOAD_LENGTH 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN 0x0819
#define MODE_LONG_RANGE_MODE 0x01
#define MODE_TCXO_3_3V 0x07
#define IRQ_TX_DONE_MASK 0x01
#define IRQ_RX_DONE_MASK 0x02
#define IRQ_PREAMBLE_DET_MASK 0x04
#define IRQ_HEADER_DET_MASK 0x10
#define IRQ_PAYLOAD_CRC_ERROR_MASK 0x40
#define XTAL_FREQ (double)32000000
#define FREQ_DIV (double)pow(2.0, 25.0)
#define FREQ_STEP (double)(XTAL_FREQ / FREQ_DIV)
int fifo_tx_addr_ptr = 0;
int fifo_rx_addr_ptr = 0;
uint8_t packet[256] = {0};
#elif MODEM == SX1276 || MODEM == SX1278
// Registers
#define REG_FIFO 0x00
#define REG_OP_MODE 0x01
#define REG_FRF_MSB 0x06
#define REG_FRF_MID 0x07
#define REG_FRF_LSB 0x08
#define REG_PA_CONFIG 0x09
#define REG_OCP 0x0b
#define REG_LNA 0x0c
#define REG_FIFO_ADDR_PTR 0x0d
#define REG_FIFO_TX_BASE_ADDR 0x0e
#define REG_FIFO_RX_BASE_ADDR 0x0f
#define REG_FIFO_RX_CURRENT_ADDR 0x10
#define REG_IRQ_FLAGS 0x12
#define REG_RX_NB_BYTES 0x13
#define REG_MODEM_STAT 0x18
#define REG_PKT_SNR_VALUE 0x19
#define REG_PKT_RSSI_VALUE 0x1a
#define REG_RSSI_VALUE 0x1b
#define REG_MODEM_CONFIG_1 0x1d
#define REG_MODEM_CONFIG_2 0x1e
#define REG_PREAMBLE_MSB 0x20
#define REG_PREAMBLE_LSB 0x21
#define REG_PAYLOAD_LENGTH 0x22
#define REG_MODEM_CONFIG_3 0x26
#define REG_FREQ_ERROR_MSB 0x28
#define REG_FREQ_ERROR_MID 0x29
#define REG_FREQ_ERROR_LSB 0x2a
#define REG_RSSI_WIDEBAND 0x2c
#define REG_DETECTION_OPTIMIZE 0x31
#define REG_HIGH_BW_OPTIMIZE_1 0x36
#define REG_DETECTION_THRESHOLD 0x37
#define REG_SYNC_WORD 0x39
#define REG_HIGH_BW_OPTIMIZE_2 0x3a
#define REG_DIO_MAPPING_1 0x40
#define REG_VERSION 0x42
#define REG_TCXO 0x4b
#define REG_PA_DAC 0x4d
// Modes
#define MODE_LONG_RANGE_MODE 0x80
#define MODE_SLEEP 0x00
#define MODE_STDBY 0x01
#define MODE_TX 0x03
#define MODE_RX_CONTINUOUS 0x05
#define MODE_RX_SINGLE 0x06
// PA config
#define PA_BOOST 0x80
// IRQ masks
#define IRQ_TX_DONE_MASK 0x08
#define IRQ_PAYLOAD_CRC_ERROR_MASK 0x20
#define IRQ_RX_DONE_MASK 0x40
#endif
2018-04-05 18:10:42 +02:00
#define MAX_PKT_LENGTH 255
2024-01-19 11:08:55 +01:00
extern SPIClass spiModem;
2023-01-07 16:35:07 +01:00
bool lora_preinit_done = false;
2018-04-05 18:10:42 +02:00
LoRaClass::LoRaClass() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
2024-01-19 11:08:55 +01:00
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(LORA_DEFAULT_RXEN_PIN), _busy(LORA_DEFAULT_BUSY_PIN),
2018-04-05 18:10:42 +02:00
_frequency(0),
2024-01-19 11:08:55 +01:00
_txp(0),
_sf(0x07),
_bw(0x04),
_cr(0x01),
_ldro(0x00),
2018-04-05 18:10:42 +02:00
_packetIndex(0),
2024-01-19 11:08:55 +01:00
_preambleLength(18),
2018-04-05 18:10:42 +02:00
_implicitHeaderMode(0),
2024-01-19 11:08:55 +01:00
_payloadLength(255),
_crcMode(1),
2018-04-05 18:10:42 +02:00
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
2023-01-07 16:35:07 +01:00
bool LoRaClass::preInit() {
2018-04-05 18:10:42 +02:00
// setup pins
pinMode(_ss, OUTPUT);
// set SS high
digitalWrite(_ss, HIGH);
2023-01-07 16:35:07 +01:00
2024-01-19 11:08:55 +01:00
spiModem.begin();
2023-01-07 16:35:07 +01:00
// check version (retry for up to 2 seconds)
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t version;
long start = millis();
while (((millis() - start) < 2000) && (millis() >= start)) {
version = readRegister(REG_VERSION);
if (version == 0x12) {
break;
}
delay(100);
}
if (version != 0x12) {
return false;
}
lora_preinit_done = true;
return true;
#elif MODEM == SX1262
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB);
synclsb = readRegister(REG_SYNC_WORD_LSB);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
2023-01-07 16:35:07 +01:00
2024-01-19 11:08:55 +01:00
lora_preinit_done = true;
return true;
#else
return false;
#endif
2023-01-07 16:35:07 +01:00
}
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t ISR_VECT LoRaClass::readRegister(uint8_t address)
{
return singleTransfer(address & 0x7f, 0x00);
}
void LoRaClass::writeRegister(uint8_t address, uint8_t value)
{
singleTransfer(address | 0x80, value);
}
uint8_t ISR_VECT LoRaClass::singleTransfer(uint8_t address, uint8_t value)
{
uint8_t response;
digitalWrite(_ss, LOW);
spiModem.beginTransaction(_spiSettings);
spiModem.transfer(address);
response = spiModem.transfer(value);
spiModem.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
#elif MODEM == SX1262
uint8_t ISR_VECT LoRaClass::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER, address, 0x00);
}
void LoRaClass::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER, address, value);
}
uint8_t ISR_VECT LoRaClass::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
spiModem.beginTransaction(_spiSettings);
spiModem.transfer(opcode);
spiModem.transfer((address & 0xFF00) >> 8);
spiModem.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER) {
spiModem.transfer(0x00);
}
response = spiModem.transfer(value);
spiModem.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void LoRaClass::enableAntenna()
{
uint8_t byte = 0x01;
// enable dio2 rf switch
executeOpcode(OP_DIO2_RF_CTRL, &byte, 1);
digitalWrite(_rxen, HIGH);
}
void LoRaClass::disableAntenna()
{
digitalWrite(_rxen, LOW);
}
void LoRaClass::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE;
executeOpcode(OP_PACKET_TYPE, &mode, 1);
}
void LoRaClass::waitOnBusy() {
if (_busy != -1) {
while (digitalRead(_busy) == HIGH)
{
// do nothing
}
}
}
void LoRaClass::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
spiModem.beginTransaction(_spiSettings);
spiModem.transfer(opcode);
for (int i = 0; i < size; i++)
{
spiModem.transfer(buffer[i]);
}
spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void LoRaClass::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
spiModem.beginTransaction(_spiSettings);
spiModem.transfer(opcode);
spiModem.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = spiModem.transfer(0x00);
}
spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void LoRaClass::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
spiModem.beginTransaction(_spiSettings);
spiModem.transfer(OP_FIFO_WRITE);
spiModem.transfer(fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
spiModem.transfer(buffer[i]);
fifo_tx_addr_ptr++;
}
spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void LoRaClass::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
spiModem.beginTransaction(_spiSettings);
spiModem.transfer(OP_FIFO_READ);
spiModem.transfer(fifo_rx_addr_ptr);
spiModem.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = spiModem.transfer(0x00);
}
spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void LoRaClass::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
// low data rate toggle
buf[3] = ldro;
// unused params in LoRa mode
buf[4] = 0x00;
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS, buf, 8);
}
void LoRaClass::setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble & 0xFF00) >> 8);
buf[1] = uint8_t((preamble & 0x00FF));
buf[2] = headermode;
buf[3] = length;
buf[4] = crc;
// standard IQ setting (no inversion)
buf[5] = 0x00;
// unused params
buf[6] = 0x00;
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS, buf, 9);
}
#endif
2023-01-07 16:35:07 +01:00
int LoRaClass::begin(long frequency)
{
2018-04-05 18:10:42 +02:00
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
2024-01-19 11:08:55 +01:00
if (_busy != -1) {
pinMode(_busy, INPUT);
}
2023-01-07 16:35:07 +01:00
if (!lora_preinit_done) {
if (!preInit()) {
return false;
}
2018-04-05 18:10:42 +02:00
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
// put in sleep mode
sleep();
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// set frequency
setFrequency(frequency);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// set base addresses
writeRegister(REG_FIFO_TX_BASE_ADDR, 0);
writeRegister(REG_FIFO_RX_BASE_ADDR, 0);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// set LNA boost
writeRegister(REG_LNA, readRegister(REG_LNA) | 0x03);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// set auto AGC
writeRegister(REG_MODEM_CONFIG_3, 0x04);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// set output power to 2 dBm
setTxPower(2);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// put in standby mode
idle();
#elif MODEM == SX1262
//#if HAS_TCXO
// turn TCXO on
enableTCXO();
//#endif
loraMode();
idle();
// cannot access registers in sleep mode on sx1262, set to idle instead
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
enableAntenna();
}
// calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = 0x7F;
executeOpcode(OP_CALIBRATE, &calibrate, 1);
setFrequency(frequency);
// set output power to 2 dBm
setTxPower(2);
// set LNA boost
writeRegister(REG_LNA, 0x96);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
return 1;
}
void LoRaClass::end()
{
// put in sleep mode
sleep();
2024-01-19 11:08:55 +01:00
// stop spiModem
spiModem.end();
lora_preinit_done = false;
2018-04-05 18:10:42 +02:00
}
int LoRaClass::beginPacket(int implicitHeader)
{
// put in standby mode
idle();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
// reset FIFO address and paload length
writeRegister(REG_FIFO_ADDR_PTR, 0);
writeRegister(REG_PAYLOAD_LENGTH, 0);
#elif MODEM == SX1262
_payloadLength = 0;
fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
return 1;
}
int LoRaClass::endPacket()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
// put in TX mode
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_TX);
// wait for TX done
while ((readRegister(REG_IRQ_FLAGS) & IRQ_TX_DONE_MASK) == 0) {
yield();
}
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, IRQ_TX_DONE_MASK);
#elif MODEM == SX1262
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK;
executeOpcode(OP_CLEAR_IRQ_STATUS, mask, 2);
#endif
2018-04-05 18:10:42 +02:00
return 1;
}
int LoRaClass::parsePacket(int size)
{
int packetLength = 0;
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int irqFlags = readRegister(REG_IRQ_FLAGS);
#elif MODEM == SX1262
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS, buf, 2);
#endif
2018-04-05 18:10:42 +02:00
if (size > 0) {
implicitHeaderMode();
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_PAYLOAD_LENGTH, size & 0xff);
#elif MODEM == SX1262
// tell radio payload length
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
} else {
explicitHeaderMode();
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, irqFlags);
if ((irqFlags & IRQ_RX_DONE_MASK) && (irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
#elif MODEM == SX1262
uint8_t irqBufFlags[2];
irqBufFlags[0] = buf[0];
irqBufFlags[1] = buf[1];
executeOpcode(OP_CLEAR_IRQ_STATUS, irqBufFlags, 2);
if ((buf[0] & IRQ_RX_DONE_MASK) && (buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
#endif
// received a packet
_packetIndex = 0;
#if MODEM == SX1276 || MODEM == SX1278
// read packet length
if (_implicitHeaderMode) {
packetLength = readRegister(REG_PAYLOAD_LENGTH);
} else {
packetLength = readRegister(REG_RX_NB_BYTES);
}
#elif MODEM == SX1262
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_RX_BUFFER_STATUS, buf, 2);
packetLength = buf[0];
#endif
#if MODEM == SX1276 || MODEM == SX1278
// set FIFO address to current RX address
writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_CURRENT_ADDR));
#endif
2018-04-05 18:10:42 +02:00
// put in standby mode
idle();
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
} else if (readRegister(REG_OP_MODE) != (MODE_LONG_RANGE_MODE | MODE_RX_SINGLE)) {
// not currently in RX mode
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// reset FIFO address
writeRegister(REG_FIFO_ADDR_PTR, 0);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// put in single RX mode
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_SINGLE);
}
#elif MODEM == SX1262
} else {
uint8_t status;
status = 0x00;
executeOpcodeRead(OP_STATUS, &status, 1);
if ((status >> 4 & 0x7) != 0x5) {
// not currently in RX mode
// put in single RX mode
uint8_t buf[3] = {0};
executeOpcode(OP_RX, buf, 3);
}
2018-04-05 18:10:42 +02:00
}
2024-01-19 11:08:55 +01:00
#endif
2018-04-05 18:10:42 +02:00
return packetLength;
}
2018-04-26 15:52:43 +02:00
uint8_t LoRaClass::modemStatus() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
return readRegister(REG_MODEM_STAT);
#elif MODEM == SX1262
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if (buf[1] & IRQ_PREAMBLE_DET_MASK != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[1] = IRQ_PREAMBLE_DET_MASK;
}
if (buf[1] & IRQ_HEADER_DET_MASK != 0) {
byte = byte | 0x02 | 0x04;
// clear register after reading
clearbuf[1] = clearbuf[1] | IRQ_HEADER_DET_MASK;
}
executeOpcode(OP_CLEAR_IRQ_STATUS, clearbuf, 2);
return byte;
#endif
2018-04-26 15:52:43 +02:00
}
uint8_t LoRaClass::currentRssiRaw() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t rssi = readRegister(REG_RSSI_VALUE);
return rssi;
#elif MODEM == SX1262
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI, &byte, 1);
return byte;
#endif
}
int ISR_VECT LoRaClass::currentRssi() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int rssi = (int)readRegister(REG_RSSI_VALUE) - RSSI_OFFSET;
if (_frequency < 820E6) rssi -= 7;
return rssi;
#elif MODEM == SX1262
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI, &byte, 1);
int rssi = -(int(byte)) / 2;
return rssi;
#endif
}
2018-06-27 14:08:16 +02:00
uint8_t LoRaClass::packetRssiRaw() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t pkt_rssi_value = readRegister(REG_PKT_RSSI_VALUE);
return pkt_rssi_value;
#elif MODEM == SX1262
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS, buf, 3);
return buf[2];
#endif
2018-06-27 14:08:16 +02:00
}
2022-01-14 21:41:10 +01:00
int ISR_VECT LoRaClass::packetRssi() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int pkt_rssi = (int)readRegister(REG_PKT_RSSI_VALUE) - RSSI_OFFSET;
int pkt_snr = packetSnr();
if (_frequency < 820E6) pkt_rssi -= 7;
if (pkt_snr < 0) {
pkt_rssi += pkt_snr;
} else {
// Slope correction is (16/15)*pkt_rssi,
// this estimation looses one floating point
// operation, and should be precise enough.
pkt_rssi = (int)(1.066 * pkt_rssi);
}
return pkt_rssi;
#elif MODEM == SX1262
// may need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS, buf, 3);
int pkt_rssi = -(int(buf[2])) / 2;
return pkt_rssi;
#endif
2018-04-05 18:10:42 +02:00
}
2022-01-14 21:41:10 +01:00
uint8_t ISR_VECT LoRaClass::packetSnrRaw() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
return readRegister(REG_PKT_SNR_VALUE);
#elif MODEM == SX1262
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS, buf, 3);
return buf[1];
#endif
2020-05-21 12:41:39 +02:00
}
2022-01-14 21:41:10 +01:00
float ISR_VECT LoRaClass::packetSnr() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
return ((int8_t)readRegister(REG_PKT_SNR_VALUE)) * 0.25;
#elif MODEM == SX1262
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS, buf, 3);
return float(buf[1]) / 4.0;
#endif
2018-04-05 18:10:42 +02:00
}
long LoRaClass::packetFrequencyError()
{
int32_t freqError = 0;
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
freqError = static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MSB) & B111);
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MID));
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_LSB));
if (readRegister(REG_FREQ_ERROR_MSB) & B1000) { // Sign bit is on
freqError -= 524288; // B1000'0000'0000'0000'0000
}
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
const float fXtal = 32E6; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
const float fError = ((static_cast<float>(freqError) * (1L << 24)) / fXtal) * (getSignalBandwidth() / 500000.0f); // p. 37
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
return static_cast<long>(fError);
#elif MODEM == SX1262
// todo: implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
#endif
2018-04-05 18:10:42 +02:00
}
size_t LoRaClass::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t LoRaClass::write(const uint8_t *buffer, size_t size)
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int currentLength = readRegister(REG_PAYLOAD_LENGTH);
// check size
if ((currentLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - currentLength;
}
#elif MODEM == SX1262
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
#endif
2018-04-05 18:10:42 +02:00
// write data
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
for (size_t i = 0; i < size; i++) {
writeRegister(REG_FIFO, buffer[i]);
}
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// update length
writeRegister(REG_PAYLOAD_LENGTH, currentLength + size);
#elif MODEM == SX1262
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
#endif
2018-04-05 18:10:42 +02:00
return size;
}
2022-01-14 21:41:10 +01:00
int ISR_VECT LoRaClass::available()
2018-04-05 18:10:42 +02:00
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
return (readRegister(REG_RX_NB_BYTES) - _packetIndex);
#elif MODEM == SX1262
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS, buf, 2);
return buf[0] - _packetIndex;
#endif
2018-04-05 18:10:42 +02:00
}
2022-01-14 21:41:10 +01:00
int ISR_VECT LoRaClass::read()
2018-04-05 18:10:42 +02:00
{
if (!available()) {
return -1;
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
_packetIndex++;
return readRegister(REG_FIFO);
#elif MODEM == SX1262
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS, rxbuf, 2);
int size = rxbuf[0];
fifo_rx_addr_ptr = rxbuf[1];
readBuffer(packet, size);
}
uint8_t byte = packet[_packetIndex];
_packetIndex++;
return byte;
#endif
2018-04-05 18:10:42 +02:00
}
int LoRaClass::peek()
{
if (!available()) {
return -1;
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
// store current FIFO address
int currentAddress = readRegister(REG_FIFO_ADDR_PTR);
// read
uint8_t b = readRegister(REG_FIFO);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
// restore FIFO address
writeRegister(REG_FIFO_ADDR_PTR, currentAddress);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
#elif MODEM == SX1262
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS, rxbuf, 2);
int size = rxbuf[0];
fifo_rx_addr_ptr = rxbuf[1];
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
readBuffer(packet, size);
}
uint8_t b = packet[_packetIndex];
#endif
2018-04-05 18:10:42 +02:00
return b;
}
void LoRaClass::flush()
{
}
void LoRaClass::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_DIO_MAPPING_1, 0x00);
#elif MODEM == SX1262
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS, buf, 8);
#endif
2018-04-05 18:10:42 +02:00
#ifdef SPI_HAS_NOTUSINGINTERRUPT
2024-01-19 11:08:55 +01:00
spiModem.usingInterrupt(digitalPinToInterrupt(_dio0));
2018-04-05 18:10:42 +02:00
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), LoRaClass::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
2024-01-19 11:08:55 +01:00
spiModem.notUsingInterrupt(digitalPinToInterrupt(_dio0));
2018-04-05 18:10:42 +02:00
#endif
}
}
void LoRaClass::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_PAYLOAD_LENGTH, size & 0xff);
#elif MODEM == SX1262
// tell radio payload length
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
} else {
explicitHeaderMode();
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_CONTINUOUS);
#elif MODEM == SX1262
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX, mode, 3);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::idle()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STDBY);
#elif MODEM == SX1262
//#if HAS_TCXO
// STDBY_XOSC
uint8_t byte = 0x01;
//#else
// // STDBY_RC
// uint8_t byte = 0x00;
//#endif
executeOpcode(OP_STANDBY, &byte, 1);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::sleep()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP);
#elif MODEM == SX1262
if (_rxen != -1) {
disableAntenna();
}
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP, &byte, 1);
#endif
2018-04-05 18:10:42 +02:00
}
2023-06-07 20:49:26 +02:00
void LoRaClass::enableTCXO() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t tcxo_reg = readRegister(REG_TCXO);
writeRegister(REG_TCXO, tcxo_reg | 0x10);
#elif MODEM == SX1262
// only tested for RAK4630, voltage may be different on other platforms
uint8_t buf[4] = {MODE_TCXO_3_3V, 0x00, 0x00, 0xFF};
executeOpcode(OP_DIO3_TCXO_CTRL, buf, 4);
#endif
2023-06-07 20:49:26 +02:00
}
void LoRaClass::disableTCXO() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t tcxo_reg = readRegister(REG_TCXO);
writeRegister(REG_TCXO, tcxo_reg & 0xEF);
#elif MODEM == SX1262
// currently cannot disable on SX1262?
#endif
2023-06-07 20:49:26 +02:00
}
2020-05-29 14:58:10 +02:00
void LoRaClass::setTxPower(int level, int outputPin) {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
if (PA_OUTPUT_RFO_PIN == outputPin) {
// RFO
if (level < 0) {
level = 0;
} else if (level > 14) {
level = 14;
}
writeRegister(REG_PA_DAC, 0x84);
writeRegister(REG_PA_CONFIG, 0x70 | level);
} else {
// PA BOOST
if (level < 2) {
level = 2;
} else if (level > 17) {
level = 17;
}
writeRegister(REG_PA_DAC, 0x84);
writeRegister(REG_PA_CONFIG, PA_BOOST | (level - 2));
}
#elif MODEM == SX1262
// currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04;
pa_buf[1] = 0x07;
pa_buf[2] = 0x00;
pa_buf[3] = 0x01;
executeOpcode(OP_PA_CONFIG, pa_buf, 4); // set pa_config for high power
if (level > 22) {
level = 22;
}
else if (level < -9) {
level = -9;
2018-04-05 18:10:42 +02:00
}
2024-01-19 11:08:55 +01:00
writeRegister(REG_OCP, 0x38); // 160mA limit, overcurrent protection
2020-05-29 14:58:10 +02:00
2024-01-19 11:08:55 +01:00
uint8_t tx_buf[2];
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
tx_buf[0] = level;
tx_buf[1] = 0x02; // ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS, tx_buf, 2);
_txp = level;
#endif
2018-04-05 18:10:42 +02:00
}
2023-01-07 16:35:07 +01:00
uint8_t LoRaClass::getTxPower() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
byte txp = readRegister(REG_PA_CONFIG);
return txp;
#elif MODEM == SX1262
return _txp;
#endif
2023-01-07 16:35:07 +01:00
}
2018-06-20 16:32:30 +02:00
void LoRaClass::setFrequency(long frequency) {
2018-04-05 18:10:42 +02:00
_frequency = frequency;
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint32_t frf = ((uint64_t)frequency << 19) / 32000000;
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
writeRegister(REG_FRF_MSB, (uint8_t)(frf >> 16));
writeRegister(REG_FRF_MID, (uint8_t)(frf >> 8));
writeRegister(REG_FRF_LSB, (uint8_t)(frf >> 0));
2024-01-19 11:08:55 +01:00
optimizeModemSensitivity();
#elif MODEM == SX1262
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ, buf, 4);
#endif
2018-04-05 18:10:42 +02:00
}
2018-06-20 16:32:30 +02:00
uint32_t LoRaClass::getFrequency() {
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
uint8_t msb = readRegister(REG_FRF_MSB);
uint8_t mid = readRegister(REG_FRF_MID);
uint8_t lsb = readRegister(REG_FRF_LSB);
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
uint32_t frf = ((uint32_t)msb << 16) | ((uint32_t)mid << 8) | (uint32_t)lsb;
uint64_t frm = (uint64_t)frf*32000000;
uint32_t frequency = (frm >> 19);
#elif MODEM == SX1262
// we can't read the frequency on the sx1262
uint32_t frequency = _frequency;
#endif
2018-04-05 18:10:42 +02:00
return frequency;
}
void LoRaClass::setSpreadingFactor(int sf)
{
if (sf < 6) {
sf = 6;
} else if (sf > 12) {
sf = 12;
}
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
if (sf == 6) {
writeRegister(REG_DETECTION_OPTIMIZE, 0xc5);
writeRegister(REG_DETECTION_THRESHOLD, 0x0c);
} else {
writeRegister(REG_DETECTION_OPTIMIZE, 0xc3);
writeRegister(REG_DETECTION_THRESHOLD, 0x0a);
}
writeRegister(REG_MODEM_CONFIG_2, (readRegister(REG_MODEM_CONFIG_2) & 0x0f) | ((sf << 4) & 0xf0));
#elif MODEM == SX1262
setModulationParams(sf, _bw, _cr, _ldro);
#endif
handleLowDataRate();
2018-04-05 18:10:42 +02:00
}
long LoRaClass::getSignalBandwidth()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
byte bw = (readRegister(REG_MODEM_CONFIG_1) >> 4);
switch (bw) {
case 0: return 7.8E3;
case 1: return 10.4E3;
case 2: return 15.6E3;
case 3: return 20.8E3;
case 4: return 31.25E3;
case 5: return 41.7E3;
case 6: return 62.5E3;
case 7: return 125E3;
case 8: return 250E3;
case 9: return 500E3;
}
#elif MODEM == SX1262
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
#endif
2022-01-09 23:40:30 +01:00
return 0;
2018-04-05 18:10:42 +02:00
}
void LoRaClass::handleLowDataRate(){
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int sf = (readRegister(REG_MODEM_CONFIG_2) >> 4);
if ( long( (1<<sf) / (getSignalBandwidth()/1000)) > 16) {
// set auto AGC and LowDataRateOptimize
writeRegister(REG_MODEM_CONFIG_3, (1<<3)|(1<<2));
} else {
// set auto AGC
writeRegister(REG_MODEM_CONFIG_3, (1<<2));
}
#elif MODEM == SX1262
_ldro = 1;
setModulationParams(_sf, _bw, _cr, _ldro);
#endif
}
void LoRaClass::optimizeModemSensitivity(){
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
byte bw = (readRegister(REG_MODEM_CONFIG_1) >> 4);
uint32_t freq = getFrequency();
if (bw == 9 && (410E6 <= freq) && (freq <= 525E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2, 0x7f);
} else if (bw == 9 && (820E6 <= freq) && (freq <= 1020E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2, 0x64);
} else {
writeRegister(REG_HIGH_BW_OPTIMIZE_1, 0x03);
}
#elif MODEM == SX1262
// todo: check if there's anything the sx1262 can do here
#endif
}
2018-04-05 18:10:42 +02:00
void LoRaClass::setSignalBandwidth(long sbw)
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int bw;
if (sbw <= 7.8E3) {
bw = 0;
} else if (sbw <= 10.4E3) {
bw = 1;
} else if (sbw <= 15.6E3) {
bw = 2;
} else if (sbw <= 20.8E3) {
bw = 3;
} else if (sbw <= 31.25E3) {
bw = 4;
} else if (sbw <= 41.7E3) {
bw = 5;
} else if (sbw <= 62.5E3) {
bw = 6;
} else if (sbw <= 125E3) {
bw = 7;
} else if (sbw <= 250E3) {
bw = 8;
} else /*if (sbw <= 250E3)*/ {
bw = 9;
}
writeRegister(REG_MODEM_CONFIG_1, (readRegister(REG_MODEM_CONFIG_1) & 0x0f) | (bw << 4));
#elif MODEM == SX1262
uint8_t bw;
if (sbw <= 7.8E3) {
bw = 0x00;
} else if (sbw <= 10.4E3) {
bw = 0x08;
} else if (sbw <= 15.6E3) {
bw = 0x01;
} else if (sbw <= 20.8E3) {
bw = 0x09;
} else if (sbw <= 31.25E3) {
bw = 0x02;
} else if (sbw <= 41.7E3) {
bw = 0x0A;
} else if (sbw <= 62.5E3) {
bw = 0x03;
} else if (sbw <= 125E3) {
bw = 0x04;
} else if (sbw <= 250E3) {
bw = 0x05;
} else /*if (sbw <= 250E3)*/ {
bw = 0x06;
}
setModulationParams(_sf, bw, _cr, _ldro);
#endif
2018-04-05 18:10:42 +02:00
handleLowDataRate();
optimizeModemSensitivity();
2018-04-05 18:10:42 +02:00
}
void LoRaClass::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_MODEM_CONFIG_1, (readRegister(REG_MODEM_CONFIG_1) & 0xf1) | (cr << 1));
#elif MODEM == SX1262
setModulationParams(_sf, _bw, cr, _ldro);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::setPreambleLength(long length)
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_PREAMBLE_MSB, (uint8_t)(length >> 8));
writeRegister(REG_PREAMBLE_LSB, (uint8_t)(length >> 0));
#elif MODEM == SX1262
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::setSyncWord(int sw)
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_SYNC_WORD, sw);
#elif MODEM == SX1262
writeRegister(REG_SYNC_WORD_MSB, sw & 0xFF00);
writeRegister(REG_SYNC_WORD_LSB, sw & 0x00FF);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::enableCrc()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_MODEM_CONFIG_2, readRegister(REG_MODEM_CONFIG_2) | 0x04);
#elif MODEM == SX1262
_crcMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::disableCrc()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_MODEM_CONFIG_2, readRegister(REG_MODEM_CONFIG_2) & 0xfb);
#elif MODEM == SX1262
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
}
byte LoRaClass::random()
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
return readRegister(REG_RSSI_WIDEBAND);
#elif MODEM == SX1262
return readRegister(REG_RANDOM_GEN);
#endif
2018-04-05 18:10:42 +02:00
}
2024-01-19 11:08:55 +01:00
void LoRaClass::setPins(int ss, int reset, int dio0, int rxen, int busy)
2018-04-05 18:10:42 +02:00
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
2024-01-19 11:08:55 +01:00
_rxen = rxen;
_busy = busy;
2018-04-05 18:10:42 +02:00
}
void LoRaClass::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void LoRaClass::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void LoRaClass::explicitHeaderMode()
{
_implicitHeaderMode = 0;
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_MODEM_CONFIG_1, readRegister(REG_MODEM_CONFIG_1) & 0xfe);
#elif MODEM == SX1262
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
}
void LoRaClass::implicitHeaderMode()
{
_implicitHeaderMode = 1;
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
writeRegister(REG_MODEM_CONFIG_1, readRegister(REG_MODEM_CONFIG_1) | 0x01);
#elif MODEM == SX1262
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#endif
2018-04-05 18:10:42 +02:00
}
2022-01-14 20:56:10 +01:00
void ISR_VECT LoRaClass::handleDio0Rise()
2018-04-05 18:10:42 +02:00
{
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
int irqFlags = readRegister(REG_IRQ_FLAGS);
// clear IRQ's
writeRegister(REG_IRQ_FLAGS, irqFlags);
if ((irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
#elif MODEM == SX1262
uint8_t buf[2];
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
buf[0] = 0x00;
buf[1] = 0x00;
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
executeOpcodeRead(OP_GET_IRQ_STATUS, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
#endif
// received a packet
_packetIndex = 0;
2018-04-05 18:10:42 +02:00
// read packet length
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
2018-04-05 18:10:42 +02:00
int packetLength = _implicitHeaderMode ? readRegister(REG_PAYLOAD_LENGTH) : readRegister(REG_RX_NB_BYTES);
// set FIFO address to current RX address
writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_CURRENT_ADDR));
2024-01-19 11:08:55 +01:00
#elif MODEM == SX1262
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS, rxbuf, 2);
int packetLength = rxbuf[0];
#endif
if (_onReceive) {
_onReceive(packetLength);
}
2018-04-05 18:10:42 +02:00
2024-01-19 11:08:55 +01:00
#if MODEM == SX1276 || MODEM == SX1278
2018-04-05 18:10:42 +02:00
// reset FIFO address
writeRegister(REG_FIFO_ADDR_PTR, 0);
2024-01-19 11:08:55 +01:00
#endif
2018-04-05 18:10:42 +02:00
}
}
2022-01-14 20:56:10 +01:00
void ISR_VECT LoRaClass::onDio0Rise()
2018-04-05 18:10:42 +02:00
{
LoRa.handleDio0Rise();
}
2024-01-19 11:08:55 +01:00
LoRaClass LoRa;