Reworked queue and buffering

This commit is contained in:
Mark Qvist 2020-05-28 22:18:19 +02:00
parent 417f39d02a
commit 163c6b021f
4 changed files with 290 additions and 134 deletions

View File

@ -4,18 +4,14 @@
#define CONFIG_H
#define MAJ_VERS 0x01
#define MIN_VERS 0x0D
#define MIN_VERS 0x0E
#define MCU_328P 0x90
#define MCU_1284P 0x91
#define MODE_HOST 0x11
#define MODE_TNC 0x12
#if defined(__AVR_ATmega328P__)
#define MCU_VARIANT MCU_328P
#warning "Firmware is being compiled for atmega328p based boards"
#elif defined(__AVR_ATmega1284P__)
#if defined(__AVR_ATmega1284P__)
#define MCU_VARIANT MCU_1284P
#warning "Firmware is being compiled for atmega1284p based boards"
#else
@ -25,22 +21,11 @@
#define MTU 500
#define SINGLE_MTU 255
#define HEADER_L 1
#define MIN_L 1
#define CMD_L 4
// MCU dependent configuration parameters
#if MCU_VARIANT == MCU_328P
const int pin_cs = 7;
const int pin_reset = 6;
const int pin_dio = 2;
const int pin_led_rx = 5;
const int pin_led_tx = 4;
#define FLOW_CONTROL_ENABLED true
#define QUEUE_SIZE 0
#define EEPROM_SIZE 512
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#endif
#if MCU_VARIANT == MCU_1284P
const int pin_cs = 4;
@ -49,10 +34,9 @@
const int pin_led_rx = 12;
const int pin_led_tx = 13;
#define FLOW_CONTROL_ENABLED true
#define QUEUE_SIZE 24
#define QUEUE_BUF_SIZE (QUEUE_SIZE+1)
#define QUEUE_MEM QUEUE_BUF_SIZE * MTU
#define CONFIG_UART_BUFFER_SIZE 6750
#define CONFIG_QUEUE_SIZE 6750
#define CONFIG_QUEUE_MAX_LENGTH 70
#define EEPROM_SIZE 4096
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
@ -67,7 +51,6 @@
// SX1276 RSSI offset to get dBm value from
// packet RSSI register
const int rssi_offset = 157;
const int snr_offset = 128;
// Default LoRa settings
int lora_sf = 0;
@ -91,23 +74,19 @@
uint8_t last_snr_raw = 0x00;
size_t read_len = 0;
uint8_t seq = 0xFF;
// Incoming packet buffer
uint8_t pbuf[MTU];
uint8_t sbuf[MTU];
// KISS command buffer
uint8_t cbuf[CMD_L];
#if QUEUE_SIZE > 0
uint8_t tbuf[MTU];
uint8_t qbuf[QUEUE_MEM];
size_t queued_lengths[QUEUE_BUF_SIZE];
#endif
// LoRa transmit buffer
uint8_t tbuf[MTU];
uint32_t stat_rx = 0;
uint32_t stat_tx = 0;
bool outbound_ready = false;
size_t queue_head = 0;
size_t queue_tail = 0;
bool stat_signal_detected = false;
bool stat_signal_synced = false;
bool stat_rx_ongoing = false;

View File

@ -55,9 +55,6 @@
size_t frame_len;
bool IN_FRAME = false;
bool ESCAPE = false;
bool SERIAL_READING = false;
uint8_t command = CMD_UNKNOWN;
uint32_t last_serial_read = 0;
uint32_t serial_read_timeout_ms = 60;
#endif

View File

@ -2,27 +2,49 @@
#include <SPI.h>
#include "Utilities.h"
FIFOBuffer serialFIFO;
uint8_t serialBuffer[CONFIG_UART_BUFFER_SIZE];
FIFOBuffer16 packet_starts;
size_t packet_starts_buf[CONFIG_QUEUE_MAX_LENGTH+1];
FIFOBuffer16 packet_lengths;
size_t packet_lengths_buf[CONFIG_QUEUE_MAX_LENGTH+1];
uint8_t packet_queue[CONFIG_QUEUE_SIZE];
volatile uint8_t queue_height = 0;
volatile size_t queued_bytes = 0;
volatile size_t queue_cursor = 0;
volatile size_t current_packet_start = 0;
void setup() {
// Seed the PRNG
randomSeed(analogRead(0));
// Initialise serial communication
memset(serialBuffer, 0, sizeof(serialBuffer));
fifo_init(&serialFIFO, serialBuffer, sizeof(serialBuffer));
Serial.begin(serial_baudrate);
while (!Serial);
serial_timer_init();
// Configure input and output pins
pinMode(pin_led_rx, OUTPUT);
pinMode(pin_led_tx, OUTPUT);
// Initialise buffers
memset(pbuf, 0, sizeof(pbuf));
memset(sbuf, 0, sizeof(sbuf));
memset(cbuf, 0, sizeof(cbuf));
#if QUEUE_SIZE > 0
memset(qbuf, 0, sizeof(qbuf));
memset(queued_lengths, 0, sizeof(queued_lengths));
#endif
memset(packet_queue, 0, sizeof(packet_queue));
memset(packet_starts_buf, 0, sizeof(packet_starts));
memset(packet_lengths_buf, 0, sizeof(packet_lengths));
fifo16_init(&packet_starts, packet_starts_buf, sizeof(packet_starts_buf));
fifo16_init(&packet_lengths, packet_lengths_buf, sizeof(packet_lengths_buf));
// Set chip select, reset and interrupt
// pins for the LoRa module
@ -188,67 +210,38 @@ void receiveCallback(int packet_size) {
}
}
bool outboundReady() {
#if QUEUE_SIZE > 0
if (queue_head != queue_tail) {
return true;
} else {
return false;
}
#else
return outbound_ready;
#endif
}
bool queueFull() {
size_t new_queue_head = (queue_head+1)%QUEUE_BUF_SIZE;
if (new_queue_head == queue_tail) {
return true;
} else {
return false;
}
return (queue_height < CONFIG_QUEUE_MAX_LENGTH && queued_bytes < CONFIG_QUEUE_SIZE);
}
void enqueuePacket(size_t length) {
size_t new_queue_head = (queue_head+1)%QUEUE_BUF_SIZE;
if (new_queue_head != queue_tail) {
queued_lengths[queue_head] = length;
size_t insert_addr = queue_head * MTU;
for (int i = 0; i < length; i++) {
qbuf[insert_addr+i] = sbuf[i];
volatile bool queue_flushing = false;
void flushQueue(void) {
if (!queue_flushing) {
queue_flushing = true;
size_t processed = 0;
for (size_t n = 0; n < queue_height; n++) {
size_t start = fifo16_pop_locked(&packet_starts);
size_t length = fifo16_pop_locked(&packet_lengths);
if (length >= MIN_L) {
for (size_t i = 0; i < length; i++) {
size_t pos = (start+i)%CONFIG_QUEUE_SIZE;
tbuf[i] = packet_queue[pos];
}
transmit(length);
processed++;
}
}
queue_head = new_queue_head;
if (!queueFull()) {
kiss_indicate_ready();
}
} else {
kiss_indicate_error(ERROR_QUEUE_FULL);
}
queue_height = 0;
queued_bytes = 0;
queue_flushing = false;
kiss_indicate_ready();
}
#if QUEUE_SIZE > 0
void processQueue() {
size_t fetch_address = queue_tail*MTU;
size_t fetch_length = queued_lengths[queue_tail];
for (int i = 0; i < fetch_length; i++) {
tbuf[i] = qbuf[fetch_address+i];
qbuf[fetch_address+i] = 0x00;
}
queued_lengths[queue_tail] = 0;
queue_tail = ++queue_tail%QUEUE_BUF_SIZE;
transmit(fetch_length);
if (!queueFull()) {
kiss_indicate_ready();
}
}
#endif
void transmit(size_t size) {
if (radio_online) {
if (!promisc) {
@ -264,11 +257,7 @@ void transmit(size_t size) {
LoRa.write(header); written++;
for (size_t i; i < size; i++) {
#if QUEUE_SIZE > 0
LoRa.write(tbuf[i]);
#else
LoRa.write(sbuf[i]);
#endif
LoRa.write(tbuf[i]);
written++;
@ -298,11 +287,7 @@ void transmit(size_t size) {
LoRa.beginPacket();
for (size_t i; i < size; i++) {
#if QUEUE_SIZE > 0
LoRa.write(tbuf[i]);
#else
LoRa.write(sbuf[i]);
#endif
LoRa.write(tbuf[i]);
written++;
}
@ -315,26 +300,35 @@ void transmit(size_t size) {
kiss_indicate_error(ERROR_TXFAILED);
led_indicate_error(5);
}
#if QUEUE_SIZE == 0
if (FLOW_CONTROL_ENABLED)
kiss_indicate_ready();
#endif
}
void serialCallback(uint8_t sbyte) {
if (IN_FRAME && sbyte == FEND && command == CMD_DATA) {
IN_FRAME = false;
if (QUEUE_SIZE == 0) {
if (outbound_ready) {
kiss_indicate_error(ERROR_QUEUE_FULL);
} else {
outbound_ready = true;
}
} else {
enqueuePacket(frame_len);
if (queue_height < CONFIG_QUEUE_MAX_LENGTH && queued_bytes < CONFIG_QUEUE_SIZE) {
size_t s = current_packet_start;
size_t e = queue_cursor-1; if (e == -1) e = CONFIG_QUEUE_SIZE-1;
size_t l;
if (s != e) {
l = (s < e) ? e - s + 1 : CONFIG_QUEUE_SIZE - s + e + 1;
} else {
l = 1;
}
if (l >= MIN_L) {
queue_height++;
fifo16_push_locked(&packet_starts, s);
fifo16_push_locked(&packet_lengths, l);
current_packet_start = queue_cursor;
}
}
if (!queueFull()) kiss_indicate_ready();
} else if (sbyte == FEND) {
IN_FRAME = true;
command = CMD_UNKNOWN;
@ -352,7 +346,11 @@ void serialCallback(uint8_t sbyte) {
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
sbuf[frame_len++] = sbyte;
if (queue_height < CONFIG_QUEUE_MAX_LENGTH && queued_bytes < CONFIG_QUEUE_SIZE) {
queued_bytes++;
packet_queue[queue_cursor++] = sbyte;
if (queue_cursor == CONFIG_QUEUE_SIZE) queue_cursor = 0;
}
}
} else if (command == CMD_FREQUENCY) {
if (sbyte == FESC) {
@ -566,19 +564,20 @@ void validateStatus() {
void loop() {
if (radio_online) {
checkModemStatus();
if (outboundReady() && !SERIAL_READING) {
if (queue_height > 0) {
if (!dcd_waiting) updateModemStatus();
if (!dcd && !dcd_led) {
if (dcd_waiting) delay(lora_rx_turnaround_ms);
updateModemStatus();
if (!dcd) {
dcd_waiting = false;
#if QUEUE_SIZE > 0
processQueue();
#else
outbound_ready = false;
transmit(frame_len);
#endif
flushQueue();
}
} else {
dcd_waiting = true;
@ -594,14 +593,36 @@ void loop() {
}
}
if (Serial.available()) {
SERIAL_READING = true;
char sbyte = Serial.read();
serial_poll();
}
void serial_poll() {
while (!fifo_isempty_locked(&serialFIFO)) {
char sbyte = fifo_pop_locked(&serialFIFO);
serialCallback(sbyte);
last_serial_read = millis();
} else {
if (SERIAL_READING && millis()-last_serial_read >= serial_read_timeout_ms) {
SERIAL_READING = false;
}
}
void buffer_serial() {
while (Serial.available()) {
char c = Serial.read();
if (!fifo_isfull_locked(&serialFIFO)) {
fifo_push_locked(&serialFIFO, c);
}
}
}
void serial_timer_init() {
TCCR3A = 0;
TCCR3B = _BV(CS10) |
_BV(WGM33)|
_BV(WGM32);
ICR3 = 23704; // Approximation of 16Mhz / 675
TIMSK3 = _BV(ICIE3);
}
ISR(TIMER3_CAPT_vect) {
buffer_serial();
}

View File

@ -1,4 +1,6 @@
#include <EEPROM.h>
#include <stddef.h>
#include <util/atomic.h>
#include "LoRa.h"
#include "ROM.h"
#include "Config.h"
@ -468,3 +470,160 @@ void unlock_rom() {
led_indicate_error(50);
eeprom_erase();
}
typedef struct FIFOBuffer
{
unsigned char *begin;
unsigned char *end;
unsigned char * volatile head;
unsigned char * volatile tail;
} FIFOBuffer;
inline bool fifo_isempty(const FIFOBuffer *f) {
return f->head == f->tail;
}
inline bool fifo_isfull(const FIFOBuffer *f) {
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
}
inline void fifo_push(FIFOBuffer *f, unsigned char c) {
*(f->tail) = c;
if (f->tail == f->end) {
f->tail = f->begin;
} else {
f->tail++;
}
}
inline unsigned char fifo_pop(FIFOBuffer *f) {
if(f->head == f->end) {
f->head = f->begin;
return *(f->end);
} else {
return *(f->head++);
}
}
inline void fifo_flush(FIFOBuffer *f) {
f->head = f->tail;
}
static inline bool fifo_isempty_locked(const FIFOBuffer *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo_isempty(f);
}
return result;
}
static inline bool fifo_isfull_locked(const FIFOBuffer *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo_isfull(f);
}
return result;
}
static inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
fifo_push(f, c);
}
}
static inline unsigned char fifo_pop_locked(FIFOBuffer *f) {
unsigned char c;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
c = fifo_pop(f);
}
return c;
}
inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) {
f->head = f->tail = f->begin = buffer;
f->end = buffer + size -1;
}
inline size_t fifo_len(FIFOBuffer *f) {
return f->end - f->begin;
}
typedef struct FIFOBuffer16
{
size_t *begin;
size_t *end;
size_t * volatile head;
size_t * volatile tail;
} FIFOBuffer16;
inline bool fifo16_isempty(const FIFOBuffer16 *f) {
return f->head == f->tail;
}
inline bool fifo16_isfull(const FIFOBuffer16 *f) {
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
}
inline void fifo16_push(FIFOBuffer16 *f, size_t c) {
*(f->tail) = c;
if (f->tail == f->end) {
f->tail = f->begin;
} else {
f->tail++;
}
}
inline size_t fifo16_pop(FIFOBuffer16 *f) {
if(f->head == f->end) {
f->head = f->begin;
return *(f->end);
} else {
return *(f->head++);
}
}
inline void fifo16_flush(FIFOBuffer16 *f) {
f->head = f->tail;
}
static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo16_isempty(f);
}
return result;
}
static inline bool fifo16_isfull_locked(const FIFOBuffer16 *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo16_isfull(f);
}
return result;
}
static inline void fifo16_push_locked(FIFOBuffer16 *f, size_t c) {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
fifo16_push(f, c);
}
}
static inline size_t fifo16_pop_locked(FIFOBuffer16 *f) {
size_t c;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
c = fifo16_pop(f);
}
return c;
}
inline void fifo16_init(FIFOBuffer16 *f, size_t *buffer, size_t size) {
f->head = f->tail = f->begin = buffer;
f->end = buffer + (size/sizeof(size_t)) - 2;
}
inline size_t fifo16_len(FIFOBuffer16 *f) {
return ((f->end - f->begin))/sizeof(size_t);
}