#include #include #include "Utilities.h" FIFOBuffer serialFIFO; uint8_t serialBuffer[CONFIG_UART_BUFFER_SIZE+1]; FIFOBuffer16 packet_starts; uint16_t packet_starts_buf[CONFIG_QUEUE_MAX_LENGTH+1]; FIFOBuffer16 packet_lengths; uint16_t packet_lengths_buf[CONFIG_QUEUE_MAX_LENGTH+1]; uint8_t packet_queue[CONFIG_QUEUE_SIZE]; volatile uint8_t queue_height = 0; volatile uint16_t queued_bytes = 0; volatile uint16_t queue_cursor = 0; volatile uint16_t current_packet_start = 0; volatile bool serial_buffering = false; char sbuf[128]; #if MCU_VARIANT == MCU_ESP32 #include "soc/rtc_wdt.h" #define ISR_VECT IRAM_ATTR bool packet_ready = false; #else #define ISR_VECT #endif void setup() { #if MCU_VARIANT == MCU_ESP32 delay(500); EEPROM.begin(EEPROM_SIZE); // TODO: Check this //Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE); #endif // Seed the PRNG randomSeed(analogRead(0)); // Initialise serial communication memset(serialBuffer, 0, sizeof(serialBuffer)); fifo_init(&serialFIFO, serialBuffer, CONFIG_UART_BUFFER_SIZE); Serial.begin(serial_baudrate); while (!Serial); serial_interrupt_init(); // Configure input and output pins pinMode(pin_led_rx, OUTPUT); pinMode(pin_led_tx, OUTPUT); // Initialise buffers memset(pbuf, 0, sizeof(pbuf)); memset(cbuf, 0, sizeof(cbuf)); memset(packet_queue, 0, sizeof(packet_queue)); memset(packet_starts_buf, 0, sizeof(packet_starts_buf)); fifo16_init(&packet_starts, packet_starts_buf, CONFIG_QUEUE_MAX_LENGTH); memset(packet_lengths_buf, 0, sizeof(packet_starts_buf)); fifo16_init(&packet_lengths, packet_lengths_buf, CONFIG_QUEUE_MAX_LENGTH); // Set chip select, reset and interrupt // pins for the LoRa module LoRa.setPins(pin_cs, pin_reset, pin_dio); #if MCU_VARIANT == MCU_ESP32 // ESP32-specific initialisation // The WDT is disabled for now. This // should be re-enabled as soon as any // Core0-related features are used rtc_wdt_protect_off(); rtc_wdt_disable(); // rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_SYSTEM); // rtc_wdt_set_time(RTC_WDT_STAGE0, 25); #endif // Validate board health, EEPROM and config validateStatus(); } void lora_receive() { if (!implicit) { LoRa.receive(); } else { LoRa.receive(implicit_l); } } inline void kiss_write_packet() { Serial.write(FEND); Serial.write(CMD_DATA); for (int i = 0; i < read_len; i++) { uint8_t byte = pbuf[i]; if (byte == FEND) { Serial.write(FESC); byte = TFEND; } if (byte == FESC) { Serial.write(FESC); byte = TFESC; } Serial.write(byte); } Serial.write(FEND); read_len = 0; #if MCU_VARIANT == MCU_ESP32 packet_ready = false; #endif } void ISR_VECT receive_callback(int packet_size) { if (!promisc) { // The standard operating mode allows large // packets with a payload up to 500 bytes, // by combining two raw LoRa packets. // We read the 1-byte header and extract // packet sequence number and split flags uint8_t header = LoRa.read(); packet_size--; uint8_t sequence = packetSequence(header); bool ready = false; if (isSplitPacket(header) && seq == SEQ_UNSET) { // This is the first part of a split // packet, so we set the seq variable // and add the data to the buffer read_len = 0; seq = sequence; #if MCU_VARIANT != MCU_ESP32 last_rssi = LoRa.packetRssi(); last_snr_raw = LoRa.packetSnrRaw(); #endif getPacketData(packet_size); } else if (isSplitPacket(header) && seq == sequence) { // This is the second part of a split // packet, so we add it to the buffer // and set the ready flag. #if MCU_VARIANT != MCU_ESP32 last_rssi = (last_rssi+LoRa.packetRssi())/2; last_snr_raw = (last_snr_raw+LoRa.packetSnrRaw())/2; #endif getPacketData(packet_size); seq = SEQ_UNSET; ready = true; } else if (isSplitPacket(header) && seq != sequence) { // This split packet does not carry the // same sequence id, so we must assume // that we are seeing the first part of // a new split packet. read_len = 0; seq = sequence; #if MCU_VARIANT != MCU_ESP32 last_rssi = LoRa.packetRssi(); last_snr_raw = LoRa.packetSnrRaw(); #endif getPacketData(packet_size); } else if (!isSplitPacket(header)) { // This is not a split packet, so we // just read it and set the ready // flag to true. if (seq != SEQ_UNSET) { // If we already had part of a split // packet in the buffer, we clear it. read_len = 0; seq = SEQ_UNSET; } #if MCU_VARIANT != MCU_ESP32 last_rssi = LoRa.packetRssi(); last_snr_raw = LoRa.packetSnrRaw(); #endif getPacketData(packet_size); ready = true; } if (ready) { #if MCU_VARIANT != MCU_ESP32 // We first signal the RSSI of the // recieved packet to the host. kiss_indicate_stat_rssi(); kiss_indicate_stat_snr(); // And then write the entire packet kiss_write_packet(); #else packet_ready = true; #endif } } else { #if MCU_VARIANT != MCU_ESP32 // In promiscuous mode, raw packets are // output directly to the host read_len = 0; last_rssi = LoRa.packetRssi(); last_snr_raw = LoRa.packetSnrRaw(); getPacketData(packet_size); // We first signal the RSSI of the // recieved packet to the host. kiss_indicate_stat_rssi(); kiss_indicate_stat_snr(); // And then write the entire packet kiss_write_packet(); #else // Promiscous mode is not supported on ESP32 for now getPacketData(packet_size); read_len = 0; #endif } } bool startRadio() { update_radio_lock(); if (!radio_online) { if (!radio_locked && hw_ready) { if (!LoRa.begin(lora_freq)) { // The radio could not be started. // Indicate this failure over both the // serial port and with the onboard LEDs kiss_indicate_error(ERROR_INITRADIO); led_indicate_error(0); return false; } else { radio_online = true; setTXPower(); setBandwidth(); setSpreadingFactor(); setCodingRate(); getFrequency(); LoRa.enableCrc(); LoRa.onReceive(receive_callback); lora_receive(); // Flash an info pattern to indicate // that the radio is now on led_indicate_info(3); return true; } } else { // Flash a warning pattern to indicate // that the radio was locked, and thus // not started led_indicate_warning(3); return false; } } else { // If radio is already on, we silently // ignore the request. return true; } } void stopRadio() { LoRa.end(); radio_online = false; } void update_radio_lock() { if (lora_freq != 0 && lora_bw != 0 && lora_txp != 0xFF && lora_sf != 0) { radio_locked = false; } else { radio_locked = true; } } bool queueFull() { return (queue_height >= CONFIG_QUEUE_MAX_LENGTH || queued_bytes >= CONFIG_QUEUE_SIZE); } volatile bool queue_flushing = false; void flushQueue(void) { if (!queue_flushing) { queue_flushing = true; uint16_t processed = 0; #if MCU_VARIANT == MCU_ESP32 while (!fifo16_isempty(&packet_starts)) { #else while (!fifo16_isempty_locked(&packet_starts)) { #endif uint16_t start = fifo16_pop(&packet_starts); uint16_t length = fifo16_pop(&packet_lengths); if (length >= MIN_L && length <= MTU) { for (uint16_t i = 0; i < length; i++) { uint16_t pos = (start+i)%CONFIG_QUEUE_SIZE; tbuf[i] = packet_queue[pos]; } transmit(length); processed++; } } } queue_height = 0; queued_bytes = 0; queue_flushing = false; } void transmit(uint16_t size) { if (radio_online) { if (!promisc) { led_tx_on(); uint16_t written = 0; uint8_t header = random(256) & 0xF0; if (size > SINGLE_MTU - HEADER_L) { header = header | FLAG_SPLIT; } LoRa.beginPacket(); LoRa.write(header); written++; for (uint16_t i; i < size; i++) { LoRa.write(tbuf[i]); written++; if (written == 255) { LoRa.endPacket(); LoRa.beginPacket(); LoRa.write(header); written = 1; } } LoRa.endPacket(); led_tx_off(); lora_receive(); } else { // In promiscuous mode, we only send out // plain raw LoRa packets with a maximum // payload of 255 bytes led_tx_on(); uint16_t written = 0; // Cap packets at 255 bytes if (size > SINGLE_MTU) { size = SINGLE_MTU; } // If implicit header mode has been set, // set packet length to payload data length if (!implicit) { LoRa.beginPacket(); } else { LoRa.beginPacket(size); } for (uint16_t i; i < size; i++) { LoRa.write(tbuf[i]); written++; } LoRa.endPacket(); led_tx_off(); lora_receive(); } } else { kiss_indicate_error(ERROR_TXFAILED); led_indicate_error(5); } } void serialCallback(uint8_t sbyte) { if (IN_FRAME && sbyte == FEND && command == CMD_DATA) { IN_FRAME = false; if (!fifo16_isfull(&packet_starts) && queued_bytes < CONFIG_QUEUE_SIZE) { uint16_t s = current_packet_start; uint16_t e = queue_cursor-1; if (e == -1) e = CONFIG_QUEUE_SIZE-1; uint16_t l; if (s != e) { l = (s < e) ? e - s + 1 : CONFIG_QUEUE_SIZE - s + e + 1; } else { l = 1; } if (l >= MIN_L) { queue_height++; fifo16_push(&packet_starts, s); fifo16_push(&packet_lengths, l); current_packet_start = queue_cursor; } } } else if (sbyte == FEND) { IN_FRAME = true; command = CMD_UNKNOWN; frame_len = 0; } else if (IN_FRAME && frame_len < MTU) { // Have a look at the command byte first if (frame_len == 0 && command == CMD_UNKNOWN) { command = sbyte; } else if (command == CMD_DATA) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } if (queue_height < CONFIG_QUEUE_MAX_LENGTH && queued_bytes < CONFIG_QUEUE_SIZE) { queued_bytes++; packet_queue[queue_cursor++] = sbyte; if (queue_cursor == CONFIG_QUEUE_SIZE) queue_cursor = 0; } } } else if (command == CMD_FREQUENCY) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } cbuf[frame_len++] = sbyte; } if (frame_len == 4) { uint32_t freq = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3]; if (freq == 0) { kiss_indicate_frequency(); } else { lora_freq = freq; if (op_mode == MODE_HOST) setFrequency(); kiss_indicate_frequency(); } } } else if (command == CMD_BANDWIDTH) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } cbuf[frame_len++] = sbyte; } if (frame_len == 4) { uint32_t bw = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3]; if (bw == 0) { kiss_indicate_bandwidth(); } else { lora_bw = bw; if (op_mode == MODE_HOST) setBandwidth(); kiss_indicate_bandwidth(); } } } else if (command == CMD_TXPOWER) { if (sbyte == 0xFF) { kiss_indicate_txpower(); } else { int txp = sbyte; if (txp > 17) txp = 17; lora_txp = txp; if (op_mode == MODE_HOST) setTXPower(); kiss_indicate_txpower(); } } else if (command == CMD_SF) { if (sbyte == 0xFF) { kiss_indicate_spreadingfactor(); } else { int sf = sbyte; if (sf < 6) sf = 6; if (sf > 12) sf = 12; lora_sf = sf; if (op_mode == MODE_HOST) setSpreadingFactor(); kiss_indicate_spreadingfactor(); } } else if (command == CMD_CR) { if (sbyte == 0xFF) { kiss_indicate_codingrate(); } else { int cr = sbyte; if (cr < 5) cr = 5; if (cr > 8) cr = 8; lora_cr = cr; if (op_mode == MODE_HOST) setCodingRate(); kiss_indicate_codingrate(); } } else if (command == CMD_IMPLICIT) { set_implicit_length(sbyte); kiss_indicate_implicit_length(); } else if (command == CMD_RADIO_STATE) { if (sbyte == 0xFF) { kiss_indicate_radiostate(); } else if (sbyte == 0x00) { stopRadio(); kiss_indicate_radiostate(); } else if (sbyte == 0x01) { startRadio(); kiss_indicate_radiostate(); } } else if (command == CMD_STAT_RX) { kiss_indicate_stat_rx(); } else if (command == CMD_STAT_TX) { kiss_indicate_stat_tx(); } else if (command == CMD_STAT_RSSI) { kiss_indicate_stat_rssi(); } else if (command == CMD_RADIO_LOCK) { update_radio_lock(); kiss_indicate_radio_lock(); } else if (command == CMD_BLINK) { led_indicate_info(sbyte); } else if (command == CMD_RANDOM) { kiss_indicate_random(getRandom()); } else if (command == CMD_DETECT) { if (sbyte == DETECT_REQ) { kiss_indicate_detect(); } } else if (command == CMD_PROMISC) { if (sbyte == 0x01) { promisc_enable(); } else if (sbyte == 0x00) { promisc_disable(); } kiss_indicate_promisc(); } else if (command == CMD_READY) { if (!queueFull()) { kiss_indicate_ready(); } else { kiss_indicate_not_ready(); } } else if (command == CMD_UNLOCK_ROM) { if (sbyte == ROM_UNLOCK_BYTE) { unlock_rom(); } } else if (command == CMD_RESET) { if (sbyte == CMD_RESET_BYTE) { hard_reset(); } } else if (command == CMD_ROM_READ) { kiss_dump_eeprom(); } else if (command == CMD_ROM_WRITE) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } cbuf[frame_len++] = sbyte; } if (frame_len == 2) { eeprom_write(cbuf[0], cbuf[1]); } } else if (command == CMD_FW_VERSION) { kiss_indicate_version(); } else if (command == CMD_PLATFORM) { kiss_indicate_platform(); } else if (command == CMD_MCU) { kiss_indicate_mcu(); } else if (command == CMD_CONF_SAVE) { eeprom_conf_save(); } else if (command == CMD_CONF_DELETE) { eeprom_conf_delete(); } } } void updateModemStatus() { uint8_t status = LoRa.modemStatus(); last_status_update = millis(); if (status & SIG_DETECT == SIG_DETECT) { stat_signal_detected = true; } else { stat_signal_detected = false; } if (status & SIG_SYNCED == SIG_SYNCED) { stat_signal_synced = true; } else { stat_signal_synced = false; } if (status & RX_ONGOING == RX_ONGOING) { stat_rx_ongoing = true; } else { stat_rx_ongoing = false; } if (stat_signal_detected || stat_signal_synced || stat_rx_ongoing) { if (dcd_count < dcd_threshold) { dcd_count++; dcd = true; } else { dcd = true; dcd_led = true; } } else { if (dcd_count > 0) { dcd_count--; } else { dcd_led = false; } dcd = false; } if (dcd_led) { led_rx_on(); } else { led_rx_off(); } } void checkModemStatus() { if (millis()-last_status_update >= status_interval_ms) { updateModemStatus(); } } void validateStatus() { #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 uint8_t boot_flags = OPTIBOOT_MCUSR; uint8_t F_POR = PORF; uint8_t F_BOR = BORF; uint8_t F_WDR = WDRF; #elif MCU_VARIANT == MCU_ESP32 // TODO: Get ESP32 boot flags uint8_t boot_flags = 0x02; uint8_t F_POR = 0x00; uint8_t F_BOR = 0x00; uint8_t F_WDR = 0x01; #endif if (boot_flags & (1< 0) { if (!dcd_waiting) updateModemStatus(); if (!dcd && !dcd_led) { if (dcd_waiting) delay(lora_rx_turnaround_ms); updateModemStatus(); if (!dcd) { dcd_waiting = false; flushQueue(); } } else { dcd_waiting = true; } } } else { if (hw_ready) { led_indicate_standby(); } else { led_indicate_not_ready(); stopRadio(); } } #if MCU_VARIANT == MCU_ESP32 buffer_serial(); if (!fifo_isempty(&serialFIFO)) serial_poll(); #else if (!fifo_isempty_locked(&serialFIFO)) serial_poll(); #endif } volatile bool serial_polling = false; void serial_poll() { serial_polling = true; #if MCU_VARIANT != MCU_ESP32 while (!fifo_isempty_locked(&serialFIFO)) { #else while (!fifo_isempty(&serialFIFO)) { #endif char sbyte = fifo_pop(&serialFIFO); serialCallback(sbyte); } serial_polling = false; } #if MCU_VARIANT != MCU_ESP32 #define MAX_CYCLES 20 #else #define MAX_CYCLES 1 #endif void buffer_serial() { if (!serial_buffering) { serial_buffering = true; uint8_t c = 0; while (c < MAX_CYCLES && Serial.available()) { c++; #if MCU_VARIANT != MCU_ESP32 if (!fifo_isfull_locked(&serialFIFO)) { fifo_push_locked(&serialFIFO, Serial.read()); } #else if (!fifo_isfull(&serialFIFO)) { fifo_push(&serialFIFO, Serial.read()); } #endif } serial_buffering = false; } } void serial_interrupt_init() { #if MCU_VARIANT == MCU_1284P TCCR3A = 0; TCCR3B = _BV(CS10) | _BV(WGM33)| _BV(WGM32); // Buffer incoming frames every 1ms ICR3 = 16000; TIMSK3 = _BV(ICIE3); #elif MCU_VARIANT == MCU_2560 // TODO: This should probably be updated for // atmega2560 support. Might be source of // reported issues from snh. TCCR3A = 0; TCCR3B = _BV(CS10) | _BV(WGM33)| _BV(WGM32); // Buffer incoming frames every 1ms ICR3 = 16000; TIMSK3 = _BV(ICIE3); #elif MCU_VARIANT == MCU_ESP32 // No interrupt-based polling on ESP32 #endif } #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 ISR(TIMER3_CAPT_vect) { buffer_serial(); } #endif