#include #include #include #include "ROM.h" #include "Config.h" #include "Framing.h" #include "MD5.h" void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } void led_indicate_error(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { digitalWrite(pin_led_rx, HIGH); digitalWrite(pin_led_tx, LOW); delay(100); digitalWrite(pin_led_rx, LOW); digitalWrite(pin_led_tx, HIGH); delay(100); if (!forever) cycles--; } digitalWrite(pin_led_rx, LOW); digitalWrite(pin_led_tx, LOW); } void led_indicate_warning(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; digitalWrite(pin_led_tx, HIGH); while(cycles > 0) { digitalWrite(pin_led_tx, LOW); delay(100); digitalWrite(pin_led_tx, HIGH); delay(100); if (!forever) cycles--; } digitalWrite(pin_led_tx, LOW); } void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { digitalWrite(pin_led_rx, LOW); delay(100); digitalWrite(pin_led_rx, HIGH); delay(100); if (!forever) cycles--; } digitalWrite(pin_led_rx, LOW); } uint8_t led_standby_min = 1; uint8_t led_standby_max = 22; uint8_t led_standby_value = led_standby_min; int8_t led_standby_direction = 0; unsigned long led_standby_ticks = 0; unsigned long led_standby_wait = 11000; void led_indicate_standby() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } led_standby_value += led_standby_direction; analogWrite(pin_led_rx, led_standby_value); digitalWrite(pin_led_tx, 0); } } void led_indicate_not_ready() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } led_standby_value += led_standby_direction; analogWrite(pin_led_tx, led_standby_value); digitalWrite(pin_led_rx, 0); } } void escapedSerialWrite(uint8_t byte) { if (byte == FEND) { Serial.write(FESC); byte = TFEND; } if (byte == FESC) { Serial.write(FESC); byte = TFESC; } Serial.write(byte); } void kiss_indicate_error(uint8_t error_code) { Serial.write(FEND); Serial.write(CMD_ERROR); Serial.write(error_code); Serial.write(FEND); } void kiss_indicate_radiostate() { Serial.write(FEND); Serial.write(CMD_RADIO_STATE); Serial.write(radio_online); Serial.write(FEND); } void kiss_indicate_stat_rx() { Serial.write(FEND); Serial.write(CMD_STAT_RX); escapedSerialWrite(stat_rx>>24); escapedSerialWrite(stat_rx>>16); escapedSerialWrite(stat_rx>>8); escapedSerialWrite(stat_rx); Serial.write(FEND); } void kiss_indicate_stat_tx() { Serial.write(FEND); Serial.write(CMD_STAT_TX); escapedSerialWrite(stat_tx>>24); escapedSerialWrite(stat_tx>>16); escapedSerialWrite(stat_tx>>8); escapedSerialWrite(stat_tx); Serial.write(FEND); } void kiss_indicate_stat_rssi() { Serial.write(FEND); Serial.write(CMD_STAT_RSSI); Serial.write((uint8_t)last_rssi+rssi_offset); Serial.write(FEND); } void kiss_indicate_radio_lock() { Serial.write(FEND); Serial.write(CMD_RADIO_LOCK); Serial.write(radio_locked); Serial.write(FEND); } void kiss_indicate_spreadingfactor() { Serial.write(FEND); Serial.write(CMD_SF); Serial.write((uint8_t)lora_sf); Serial.write(FEND); } void kiss_indicate_codingrate() { Serial.write(FEND); Serial.write(CMD_CR); Serial.write((uint8_t)lora_cr); Serial.write(FEND); } void kiss_indicate_txpower() { Serial.write(FEND); Serial.write(CMD_TXPOWER); Serial.write((uint8_t)lora_txp); Serial.write(FEND); } void kiss_indicate_bandwidth() { Serial.write(FEND); Serial.write(CMD_BANDWIDTH); escapedSerialWrite(lora_bw>>24); escapedSerialWrite(lora_bw>>16); escapedSerialWrite(lora_bw>>8); escapedSerialWrite(lora_bw); Serial.write(FEND); } void kiss_indicate_frequency() { Serial.write(FEND); Serial.write(CMD_FREQUENCY); escapedSerialWrite(lora_freq>>24); escapedSerialWrite(lora_freq>>16); escapedSerialWrite(lora_freq>>8); escapedSerialWrite(lora_freq); Serial.write(FEND); } void kiss_indicate_random(uint8_t byte) { Serial.write(FEND); Serial.write(CMD_RANDOM); Serial.write(byte); Serial.write(FEND); } void kiss_indicate_ready() { Serial.write(FEND); Serial.write(CMD_READY); Serial.write(0x01); Serial.write(FEND); } void kiss_indicate_detect() { Serial.write(FEND); Serial.write(CMD_DETECT); Serial.write(DETECT_RESP); Serial.write(FEND); } void kiss_indicate_version() { Serial.write(FEND); Serial.write(CMD_FW_VERSION); Serial.write(MAJ_VERS); Serial.write(MIN_VERS); Serial.write(FEND); } bool isSplitPacket(uint8_t header) { return (header & FLAG_SPLIT); } uint8_t packetSequence(uint8_t header) { return header >> 4; } void getPacketData(int len) { while (len--) { pbuf[read_len++] = LoRa.read(); } } void setSpreadingFactor() { if (radio_online) LoRa.setSpreadingFactor(lora_sf); } void setCodingRate() { if (radio_online) LoRa.setCodingRate4(lora_cr); } void setTXPower() { if (radio_online) { if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN); } } void getBandwidth() { if (radio_online) { lora_bw = LoRa.getSignalBandwidth(); } } void setBandwidth() { if (radio_online) { LoRa.setSignalBandwidth(lora_bw); getBandwidth(); } } void getFrequency() { if (radio_online) { lora_freq = LoRa.getFrequency(); } } void setFrequency() { if (radio_online) { LoRa.setFrequency(lora_freq); getFrequency(); } } uint8_t getRandom() { if (radio_online) { return LoRa.random(); } else { return 0x00; } } bool eeprom_info_locked() { uint8_t lock_byte = EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)); if (lock_byte == INFO_LOCK_BYTE) { return true; } else { return false; } } void eeprom_dump_info() { for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) { uint8_t byte = EEPROM.read(eeprom_addr(addr)); escapedSerialWrite(byte); } } void eeprom_dump_config() { for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) { uint8_t byte = EEPROM.read(eeprom_addr(addr)); escapedSerialWrite(byte); } } void eeprom_dump_all() { for (int addr = 0; addr < EEPROM_RESERVED; addr++) { uint8_t byte = EEPROM.read(eeprom_addr(addr)); escapedSerialWrite(byte); } } void kiss_dump_eeprom() { Serial.write(FEND); Serial.write(CMD_ROM_READ); eeprom_dump_all(); Serial.write(FEND); } void eeprom_write(uint8_t addr, uint8_t byte) { if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) { EEPROM.update(eeprom_addr(addr), byte); } else { kiss_indicate_error(ERROR_EEPROM_LOCKED); } } void eeprom_erase() { for (int addr = 0; addr < EEPROM_RESERVED; addr++) { EEPROM.update(eeprom_addr(addr), 0xFF); } while (true) { led_tx_on(); led_rx_off(); } } bool eeprom_lock_set() { if (EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) { return true; } else { return false; } } bool eeprom_product_valid() { if (EEPROM.read(eeprom_addr(ADDR_PRODUCT)) == PRODUCT_RNODE) { return true; } else { return false; } } bool eeprom_model_valid() { model = EEPROM.read(eeprom_addr(ADDR_MODEL)); if (model == MODEL_A4 || model == MODEL_A9) { return true; } else { return false; } } bool eeprom_hwrev_valid() { hwrev = EEPROM.read(eeprom_addr(ADDR_HW_REV)); if (hwrev != 0x00 && hwrev != 0xFF) { return true; } else { return false; } } bool eeprom_checksum_valid() { char *data = (char*)malloc(CHECKSUMMED_SIZE); for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) { char byte = EEPROM.read(eeprom_addr(i)); data[i] = byte; } unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE); bool checksum_valid = true; for (uint8_t i = 0; i < 16; i++) { uint8_t stored_chk_byte = EEPROM.read(eeprom_addr(ADDR_CHKSUM+i)); uint8_t calced_chk_byte = (uint8_t)hash[i]; if (stored_chk_byte != calced_chk_byte) { checksum_valid = false; } } free(hash); free(data); return checksum_valid; } void unlock_rom() { led_indicate_error(50); eeprom_erase(); }