#include #include #include "Config.h" #include "Framing.h" #include "EEPROM.cpp" #include "Utilities.cpp" void setup() { // Seed the PRNG randomSeed(analogRead(0)); // Initialise serial communication Serial.begin(serial_baudrate); while (!Serial); // Configure input and output pins pinMode(pin_led_rx, OUTPUT); pinMode(pin_led_tx, OUTPUT); // Set up buffers memset(pbuf, 0, sizeof(pbuf)); memset(sbuf, 0, sizeof(sbuf)); memset(cbuf, 0, sizeof(cbuf)); // Set chip select, reset and interrupt // pins for the LoRa module LoRa.setPins(pin_cs, pin_reset, pin_dio); } bool startRadio() { update_radio_lock(); if (!radio_online) { if (!radio_locked) { if (!LoRa.begin(lora_freq)) { // The radio could not be started. // Indicate this failure over both the // serial port and with the onboard LEDs kiss_indicate_error(ERROR_INITRADIO); led_indicate_error(0); } else { radio_online = true; setTXPower(); setBandwidth(); setSpreadingFactor(); setCodingRate(); getFrequency(); LoRa.enableCrc(); LoRa.onReceive(receiveCallback); LoRa.receive(); // Flash an info pattern to indicate // that the radio is now on led_indicate_info(3); } } else { // Flash a warning pattern to indicate // that the radio was locked, and thus // not started led_indicate_warning(3); } } else { // If radio is already on, we silently // ignore the request. } } void stopRadio() { LoRa.end(); radio_online = false; } void update_radio_lock() { if (lora_freq != 0 && lora_bw != 0 && lora_txp != 0xFF && lora_sf != 0) { radio_locked = false; } else { radio_locked = true; } } void receiveCallback(int packet_size) { uint8_t header = LoRa.read(); packet_size--; uint8_t sequence = packetSequence(header); bool ready = false; if (isSplitPacket(header) && seq == SEQ_UNSET) { // This is the first part of a split // packet, so we set the seq variable // and add the data to the buffer read_len = 0; seq = sequence; last_rssi = LoRa.packetRssi(); getPacketData(packet_size); } else if (isSplitPacket(header) && seq == sequence) { // This is the second part of a split // packet, so we add it to the buffer // and set the ready flag. last_rssi = (last_rssi+LoRa.packetRssi())/2; getPacketData(packet_size); seq = SEQ_UNSET; ready = true; } else if (isSplitPacket(header) && seq != sequence) { // This split packet does not carry the // same sequence id, so we must assume // that we are seeing the first part of // a new split packet. read_len = 0; seq = sequence; last_rssi = LoRa.packetRssi(); getPacketData(packet_size); } else if (!isSplitPacket(header)) { // This is not a split packet, so we // just read it and set the ready // flag to true. if (seq != SEQ_UNSET) { // If we already had part of a split // packet in the buffer, we clear it. read_len = 0; seq = SEQ_UNSET; } last_rssi = LoRa.packetRssi(); getPacketData(packet_size); ready = true; } if (ready) { // We first signal the RSSI of the // recieved packet to the host. Serial.write(FEND); Serial.write(CMD_STAT_RSSI); Serial.write((uint8_t)(last_rssi-rssi_offset)); // And then write the entire packet Serial.write(FEND); Serial.write(CMD_DATA); for (int i = 0; i < read_len; i++) { uint8_t byte = pbuf[i]; if (byte == FEND) { Serial.write(FESC); byte = TFEND; } if (byte == FESC) { Serial.write(FESC); byte = TFESC; } Serial.write(byte); } Serial.write(FEND); read_len = 0; } } void transmit(size_t size) { if (radio_online) { led_tx_on(); size_t written = 0; uint8_t header = random(256) & 0xF0; if (size > SINGLE_MTU - HEADER_L) { header = header | FLAG_SPLIT; } LoRa.beginPacket(); LoRa.write(header); written++; for (size_t i; i < size; i++) { LoRa.write(sbuf[i]); written++; if (written == 255) { LoRa.endPacket(); LoRa.beginPacket(); LoRa.write(header); written = 1; } } LoRa.endPacket(); led_tx_off(); LoRa.receive(); } else { kiss_indicate_error(ERROR_TXFAILED); led_indicate_error(5); } if (FLOW_CONTROL_ENABLED) kiss_indicate_ready(); } void serialCallback(uint8_t sbyte) { if (IN_FRAME && sbyte == FEND && command == CMD_DATA) { IN_FRAME = false; outbound_ready = true; } else if (sbyte == FEND) { IN_FRAME = true; command = CMD_UNKNOWN; frame_len = 0; } else if (IN_FRAME && frame_len < MTU) { // Have a look at the command byte first if (frame_len == 0 && command == CMD_UNKNOWN) { command = sbyte; } else if (command == CMD_DATA) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } sbuf[frame_len++] = sbyte; } } else if (command == CMD_FREQUENCY) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } cbuf[frame_len++] = sbyte; } if (frame_len == 4) { uint32_t freq = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3]; if (freq == 0) { kiss_indicate_frequency(); } else { lora_freq = freq; setFrequency(); kiss_indicate_frequency(); } } } else if (command == CMD_BANDWIDTH) { if (sbyte == FESC) { ESCAPE = true; } else { if (ESCAPE) { if (sbyte == TFEND) sbyte = FEND; if (sbyte == TFESC) sbyte = FESC; ESCAPE = false; } cbuf[frame_len++] = sbyte; } if (frame_len == 4) { uint32_t bw = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3]; if (bw == 0) { kiss_indicate_bandwidth(); } else { lora_bw = bw; setBandwidth(); kiss_indicate_bandwidth(); } } } else if (command == CMD_TXPOWER) { if (sbyte == 0xFF) { kiss_indicate_txpower(); } else { int txp = sbyte; if (txp > 17) txp = 17; lora_txp = txp; setTXPower(); kiss_indicate_txpower(); } } else if (command == CMD_SF) { if (sbyte == 0xFF) { kiss_indicate_spreadingfactor(); } else { int sf = sbyte; if (sf < 7) sf = 7; if (sf > 12) sf = 12; lora_sf = sf; setSpreadingFactor(); kiss_indicate_spreadingfactor(); } } else if (command == CMD_RADIO_STATE) { if (sbyte == 0xFF) { kiss_indicate_radiostate(); } else if (sbyte == 0x00) { stopRadio(); kiss_indicate_radiostate(); } else if (sbyte == 0x01) { startRadio(); kiss_indicate_radiostate(); } } else if (command == CMD_STAT_RX) { kiss_indicate_stat_rx(); } else if (command == CMD_STAT_TX) { kiss_indicate_stat_tx(); } else if (command == CMD_STAT_RSSI) { kiss_indicate_stat_rssi(); } else if (command == CMD_RADIO_LOCK) { update_radio_lock(); kiss_indicate_radio_lock(); } else if (command == CMD_BLINK) { led_indicate_info(sbyte); } else if (command == CMD_RANDOM) { kiss_indicate_random(getRandom()); } } } void updateModemStatus() { uint8_t status = LoRa.modemStatus(); last_status_update = millis(); if (status & SIG_DETECT == 0x01) { stat_signal_detected = true; } else { stat_signal_detected = false; } if (status & SIG_SYNCED == 0x01) { stat_signal_synced = true; } else { stat_signal_synced = false; } if (status & RX_ONGOING == 0x01) { stat_rx_ongoing = true; } else { stat_rx_ongoing = false; } if (stat_signal_detected || stat_signal_synced || stat_rx_ongoing) { if (dcd_count < dcd_threshold) { dcd_count++; dcd = true; } else { dcd = true; dcd_led = true; } } else { if (dcd_count > 0) { dcd_count--; } else { dcd_led = false; } dcd = false; } if (dcd_led) { led_rx_on(); } else { led_rx_off(); } } void checkModemStatus() { if (millis()-last_status_update >= status_interval_ms) { updateModemStatus(); } } void loop() { if (radio_online) { checkModemStatus(); if (outbound_ready) { if (!dcd_waiting) updateModemStatus(); if (!dcd && !dcd_led) { if (dcd_waiting) delay(lora_rx_turnaround_ms); updateModemStatus(); if (!dcd) { outbound_ready = false; dcd_waiting = false; transmit(frame_len); } } else { dcd_waiting = true; } } } else { led_indicate_standby(); } if (Serial.available()) { char sbyte = Serial.read(); serialCallback(sbyte); } }