#if BOARD_MODEL == BOARD_TBEAM #include AXP20X_Class PMU; #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.14 void disablePeripherals() { PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); } #elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 #define BAT_C_SAMPLES 7 #define BAT_D_SAMPLES 2 #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.3 #define BAT_V_CHG 4.48 #define BAT_V_FLOAT 4.33 #define BAT_SAMPLES 5 const uint8_t pin_vbat = 35; float bat_p_samples[BAT_SAMPLES]; float bat_v_samples[BAT_SAMPLES]; uint8_t bat_samples_count = 0; int bat_discharging_samples = 0; int bat_charging_samples = 0; int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; #endif uint32_t last_pmu_update = 0; uint8_t pmu_target_pps = 1; int pmu_update_interval = 1000/pmu_target_pps; void measure_battery() { #if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 battery_installed = true; battery_indeterminate = true; bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(pin_vbat)) / 4095*2*3.3*1.1; bat_p_samples[bat_samples_count%BAT_SAMPLES] = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; bat_samples_count++; if (!battery_ready && bat_samples_count >= BAT_SAMPLES) { battery_ready = true; } if (battery_ready) { battery_percent = 0; for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) { battery_percent += bat_p_samples[bi]; } battery_percent = battery_percent/BAT_SAMPLES; battery_voltage = 0; for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) { battery_voltage += bat_v_samples[bi]; } battery_voltage = battery_voltage/BAT_SAMPLES; if (bat_delay_v == 0) bat_delay_v = battery_voltage; if (battery_percent > 100.0) battery_percent = 100.0; if (battery_percent < 0.0) battery_percent = 0.0; if (bat_samples_count%BAT_SAMPLES == 0) { if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) { bat_voltage_dropping = true; } else { bat_voltage_dropping = false; } bat_samples_count = 0; } if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) { battery_state = BATTERY_STATE_DISCHARGING; } else { #if BOARD_MODEL == BOARD_RNODE_NG_21 battery_state = BATTERY_STATE_CHARGING; #else battery_state = BATTERY_STATE_DISCHARGING; #endif } // if (bt_state == BT_STATE_CONNECTED) { // SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]); // if (bat_voltage_dropping) { // SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.\n", battery_percent); // } else { // SerialBT.print(" Voltage is not dropping.\n"); // } // } } #elif BOARD_MODEL == BOARD_TBEAM float discharge_current = PMU.getBattDischargeCurrent(); float charge_current = PMU.getBattChargeCurrent(); battery_voltage = PMU.getBattVoltage()/1000.0; // battery_percent = PMU.getBattPercentage()*1.0; battery_installed = PMU.isBatteryConnect(); external_power = PMU.isVBUSPlug(); float ext_voltage = PMU.getVbusVoltage()/1000.0; float ext_current = PMU.getVbusCurrent(); if (battery_installed) { if (PMU.isChargeing()) { battery_state = BATTERY_STATE_CHARGING; battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; } else { if (discharge_current > 0.0) { battery_state = BATTERY_STATE_DISCHARGING; battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; } else { battery_state = BATTERY_STATE_CHARGED; battery_percent = 100.0; } } } else { battery_state = BATTERY_STATE_DISCHARGING; battery_percent = 0.0; battery_voltage = 0.0; } if (battery_percent > 100.0) battery_percent = 100.0; if (battery_percent < 0.0) battery_percent = 0.0; float charge_watts = battery_voltage*(charge_current/1000.0); float discharge_watts = battery_voltage*(discharge_current/1000.0); float ext_watts = ext_voltage*(ext_current/1000.0); battery_ready = true; // if (bt_state == BT_STATE_CONNECTED) { // if (battery_installed) { // if (external_power) { // SerialBT.printf("External power connected, drawing %.2fw, %.1fmA at %.1fV\n", ext_watts, ext_current, ext_voltage); // } else { // SerialBT.println("Running on battery"); // } // SerialBT.printf("Battery percentage %.1f%%\n", battery_percent); // SerialBT.printf("Battery voltage %.2fv\n", battery_voltage); // // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature); // if (battery_state == BATTERY_STATE_CHARGING) { // SerialBT.printf("Charging with %.2fw, %.1fmA at %.1fV\n", charge_watts, charge_current, battery_voltage); // } else if (battery_state == BATTERY_STATE_DISCHARGING) { // SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage); // } else if (battery_state == BATTERY_STATE_CHARGED) { // SerialBT.printf("Battery charged\n"); // } // } else { // SerialBT.println("No battery installed"); // } // SerialBT.println(""); // } #endif } void update_pmu() { if (millis()-last_pmu_update >= pmu_update_interval) { measure_battery(); last_pmu_update = millis(); } } bool init_pmu() { #if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 pinMode(pin_vbat, INPUT); return true; #elif BOARD_MODEL == BOARD_TBEAM Wire.begin(I2C_SDA, I2C_SCL); if (PMU.begin(Wire, AXP192_SLAVE_ADDRESS) == AXP_FAIL) return false; // Configure charging indicator PMU.setChgLEDMode(AXP20X_LED_OFF); // Turn off unused power sources to save power PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF); PMU.setPowerOutPut(AXP192_DCDC2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF); PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); PMU.setPowerOutPut(AXP192_EXTEN, AXP202_OFF); // Set the power of LoRa and GPS module to 3.3V PMU.setLDO2Voltage(3300); //LoRa VDD PMU.setLDO3Voltage(3300); //GPS VDD PMU.setDCDC1Voltage(3300); //3.3V Pin next to 21 and 22 is controlled by DCDC1 PMU.setPowerOutPut(AXP192_DCDC1, AXP202_ON); // Turn on SX1276 PMU.setPowerOutPut(AXP192_LDO2, AXP202_ON); // Turn off GPS PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF); pinMode(PMU_IRQ, INPUT_PULLUP); attachInterrupt(PMU_IRQ, [] { // pmu_irq = true; }, FALLING); PMU.adc1Enable(AXP202_VBUS_VOL_ADC1 | AXP202_VBUS_CUR_ADC1 | AXP202_BATT_CUR_ADC1 | AXP202_BATT_VOL_ADC1, AXP202_ON); PMU.enableIRQ(AXP202_VBUS_REMOVED_IRQ | AXP202_VBUS_CONNECT_IRQ | AXP202_BATT_REMOVED_IRQ | AXP202_BATT_CONNECT_IRQ, AXP202_ON); PMU.clearIRQ(); return true; #else return false; #endif }