mirror of
https://github.com/liberatedsystems/RNode_Firmware_CE.git
synced 2024-07-02 14:34:13 +02:00
969 lines
25 KiB
C++
969 lines
25 KiB
C++
// MIT License
|
|
//
|
|
// Copyright (c) 2022 Mark Qvist - unsigned.io/rnode
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
#include <Arduino.h>
|
|
#include <SPI.h>
|
|
#include "Utilities.h"
|
|
|
|
FIFOBuffer serialFIFO;
|
|
uint8_t serialBuffer[CONFIG_UART_BUFFER_SIZE+1];
|
|
|
|
FIFOBuffer16 packet_starts;
|
|
uint16_t packet_starts_buf[CONFIG_QUEUE_MAX_LENGTH+1];
|
|
|
|
FIFOBuffer16 packet_lengths;
|
|
uint16_t packet_lengths_buf[CONFIG_QUEUE_MAX_LENGTH+1];
|
|
|
|
uint8_t packet_queue[CONFIG_QUEUE_SIZE];
|
|
|
|
volatile uint8_t queue_height = 0;
|
|
volatile uint16_t queued_bytes = 0;
|
|
volatile uint16_t queue_cursor = 0;
|
|
volatile uint16_t current_packet_start = 0;
|
|
volatile bool serial_buffering = false;
|
|
#if HAS_BLUETOOTH
|
|
bool bt_init_ran = false;
|
|
#endif
|
|
|
|
char sbuf[128];
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
bool packet_ready = false;
|
|
#endif
|
|
|
|
void setup() {
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
delay(500);
|
|
EEPROM.begin(EEPROM_SIZE);
|
|
Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE);
|
|
#endif
|
|
|
|
// Seed the PRNG
|
|
randomSeed(analogRead(0));
|
|
|
|
// Initialise serial communication
|
|
memset(serialBuffer, 0, sizeof(serialBuffer));
|
|
fifo_init(&serialFIFO, serialBuffer, CONFIG_UART_BUFFER_SIZE);
|
|
|
|
Serial.begin(serial_baudrate);
|
|
while (!Serial);
|
|
|
|
serial_interrupt_init();
|
|
|
|
// Configure input and output pins
|
|
pinMode(pin_led_rx, OUTPUT);
|
|
pinMode(pin_led_tx, OUTPUT);
|
|
|
|
// Initialise buffers
|
|
memset(pbuf, 0, sizeof(pbuf));
|
|
memset(cbuf, 0, sizeof(cbuf));
|
|
|
|
memset(packet_queue, 0, sizeof(packet_queue));
|
|
|
|
memset(packet_starts_buf, 0, sizeof(packet_starts_buf));
|
|
fifo16_init(&packet_starts, packet_starts_buf, CONFIG_QUEUE_MAX_LENGTH);
|
|
|
|
memset(packet_lengths_buf, 0, sizeof(packet_starts_buf));
|
|
fifo16_init(&packet_lengths, packet_lengths_buf, CONFIG_QUEUE_MAX_LENGTH);
|
|
|
|
// Set chip select, reset and interrupt
|
|
// pins for the LoRa module
|
|
LoRa.setPins(pin_cs, pin_reset, pin_dio);
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
#if HAS_PMU == true
|
|
pmu_ready = init_pmu();
|
|
#endif
|
|
|
|
kiss_indicate_reset();
|
|
#endif
|
|
|
|
#if HAS_DISPLAY
|
|
disp_ready = display_init();
|
|
#endif
|
|
|
|
// Validate board health, EEPROM and config
|
|
validateStatus();
|
|
}
|
|
|
|
void lora_receive() {
|
|
if (!implicit) {
|
|
LoRa.receive();
|
|
} else {
|
|
LoRa.receive(implicit_l);
|
|
}
|
|
}
|
|
|
|
inline void kiss_write_packet() {
|
|
serial_write(FEND);
|
|
serial_write(CMD_DATA);
|
|
for (uint16_t i = 0; i < read_len; i++) {
|
|
uint8_t byte = pbuf[i];
|
|
if (byte == FEND) { serial_write(FESC); byte = TFEND; }
|
|
if (byte == FESC) { serial_write(FESC); byte = TFESC; }
|
|
serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
read_len = 0;
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
packet_ready = false;
|
|
#endif
|
|
}
|
|
|
|
inline void getPacketData(uint16_t len) {
|
|
while (len-- && read_len < MTU) {
|
|
pbuf[read_len++] = LoRa.read();
|
|
}
|
|
}
|
|
|
|
void ISR_VECT receive_callback(int packet_size) {
|
|
if (!promisc) {
|
|
// The standard operating mode allows large
|
|
// packets with a payload up to 500 bytes,
|
|
// by combining two raw LoRa packets.
|
|
// We read the 1-byte header and extract
|
|
// packet sequence number and split flags
|
|
uint8_t header = LoRa.read(); packet_size--;
|
|
uint8_t sequence = packetSequence(header);
|
|
bool ready = false;
|
|
|
|
if (isSplitPacket(header) && seq == SEQ_UNSET) {
|
|
// This is the first part of a split
|
|
// packet, so we set the seq variable
|
|
// and add the data to the buffer
|
|
read_len = 0;
|
|
seq = sequence;
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
last_rssi = LoRa.packetRssi();
|
|
last_snr_raw = LoRa.packetSnrRaw();
|
|
#endif
|
|
|
|
getPacketData(packet_size);
|
|
|
|
} else if (isSplitPacket(header) && seq == sequence) {
|
|
// This is the second part of a split
|
|
// packet, so we add it to the buffer
|
|
// and set the ready flag.
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
last_rssi = (last_rssi+LoRa.packetRssi())/2;
|
|
last_snr_raw = (last_snr_raw+LoRa.packetSnrRaw())/2;
|
|
#endif
|
|
|
|
getPacketData(packet_size);
|
|
seq = SEQ_UNSET;
|
|
ready = true;
|
|
|
|
} else if (isSplitPacket(header) && seq != sequence) {
|
|
// This split packet does not carry the
|
|
// same sequence id, so we must assume
|
|
// that we are seeing the first part of
|
|
// a new split packet.
|
|
read_len = 0;
|
|
seq = sequence;
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
last_rssi = LoRa.packetRssi();
|
|
last_snr_raw = LoRa.packetSnrRaw();
|
|
#endif
|
|
|
|
getPacketData(packet_size);
|
|
|
|
} else if (!isSplitPacket(header)) {
|
|
// This is not a split packet, so we
|
|
// just read it and set the ready
|
|
// flag to true.
|
|
|
|
if (seq != SEQ_UNSET) {
|
|
// If we already had part of a split
|
|
// packet in the buffer, we clear it.
|
|
read_len = 0;
|
|
seq = SEQ_UNSET;
|
|
}
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
last_rssi = LoRa.packetRssi();
|
|
last_snr_raw = LoRa.packetSnrRaw();
|
|
#endif
|
|
|
|
getPacketData(packet_size);
|
|
ready = true;
|
|
}
|
|
|
|
if (ready) {
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
// We first signal the RSSI of the
|
|
// recieved packet to the host.
|
|
kiss_indicate_stat_rssi();
|
|
kiss_indicate_stat_snr();
|
|
|
|
// And then write the entire packet
|
|
kiss_write_packet();
|
|
#else
|
|
packet_ready = true;
|
|
#endif
|
|
}
|
|
} else {
|
|
// In promiscuous mode, raw packets are
|
|
// output directly to the host
|
|
read_len = 0;
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
last_rssi = LoRa.packetRssi();
|
|
last_snr_raw = LoRa.packetSnrRaw();
|
|
getPacketData(packet_size);
|
|
|
|
// We first signal the RSSI of the
|
|
// recieved packet to the host.
|
|
kiss_indicate_stat_rssi();
|
|
kiss_indicate_stat_snr();
|
|
|
|
// And then write the entire packet
|
|
kiss_write_packet();
|
|
|
|
#else
|
|
getPacketData(packet_size);
|
|
packet_ready = true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool startRadio() {
|
|
update_radio_lock();
|
|
if (!radio_online) {
|
|
if (!radio_locked && hw_ready) {
|
|
if (!LoRa.begin(lora_freq)) {
|
|
// The radio could not be started.
|
|
// Indicate this failure over both the
|
|
// serial port and with the onboard LEDs
|
|
radio_error = true;
|
|
kiss_indicate_error(ERROR_INITRADIO);
|
|
led_indicate_error(0);
|
|
return false;
|
|
} else {
|
|
radio_online = true;
|
|
|
|
setTXPower();
|
|
setBandwidth();
|
|
setSpreadingFactor();
|
|
setCodingRate();
|
|
getFrequency();
|
|
|
|
LoRa.enableCrc();
|
|
|
|
LoRa.onReceive(receive_callback);
|
|
|
|
lora_receive();
|
|
|
|
// Flash an info pattern to indicate
|
|
// that the radio is now on
|
|
kiss_indicate_radiostate();
|
|
led_indicate_info(3);
|
|
return true;
|
|
}
|
|
|
|
} else {
|
|
// Flash a warning pattern to indicate
|
|
// that the radio was locked, and thus
|
|
// not started
|
|
radio_online = false;
|
|
kiss_indicate_radiostate();
|
|
led_indicate_warning(3);
|
|
return false;
|
|
}
|
|
} else {
|
|
// If radio is already on, we silently
|
|
// ignore the request.
|
|
kiss_indicate_radiostate();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void stopRadio() {
|
|
LoRa.end();
|
|
radio_online = false;
|
|
}
|
|
|
|
void update_radio_lock() {
|
|
if (lora_freq != 0 && lora_bw != 0 && lora_txp != 0xFF && lora_sf != 0) {
|
|
radio_locked = false;
|
|
} else {
|
|
radio_locked = true;
|
|
}
|
|
}
|
|
|
|
bool queueFull() {
|
|
return (queue_height >= CONFIG_QUEUE_MAX_LENGTH || queued_bytes >= CONFIG_QUEUE_SIZE);
|
|
}
|
|
|
|
volatile bool queue_flushing = false;
|
|
void flushQueue(void) {
|
|
if (!queue_flushing) {
|
|
queue_flushing = true;
|
|
|
|
uint16_t processed = 0;
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
while (!fifo16_isempty(&packet_starts)) {
|
|
#else
|
|
while (!fifo16_isempty_locked(&packet_starts)) {
|
|
#endif
|
|
|
|
uint16_t start = fifo16_pop(&packet_starts);
|
|
uint16_t length = fifo16_pop(&packet_lengths);
|
|
|
|
if (length >= MIN_L && length <= MTU) {
|
|
for (uint16_t i = 0; i < length; i++) {
|
|
uint16_t pos = (start+i)%CONFIG_QUEUE_SIZE;
|
|
tbuf[i] = packet_queue[pos];
|
|
}
|
|
|
|
transmit(length);
|
|
processed++;
|
|
}
|
|
}
|
|
}
|
|
|
|
queue_height = 0;
|
|
queued_bytes = 0;
|
|
queue_flushing = false;
|
|
}
|
|
|
|
void transmit(uint16_t size) {
|
|
if (radio_online) {
|
|
if (!promisc) {
|
|
led_tx_on();
|
|
uint16_t written = 0;
|
|
uint8_t header = random(256) & 0xF0;
|
|
|
|
if (size > SINGLE_MTU - HEADER_L) {
|
|
header = header | FLAG_SPLIT;
|
|
}
|
|
|
|
LoRa.beginPacket();
|
|
LoRa.write(header); written++;
|
|
|
|
for (uint16_t i=0; i < size; i++) {
|
|
LoRa.write(tbuf[i]);
|
|
|
|
written++;
|
|
|
|
if (written == 255) {
|
|
LoRa.endPacket();
|
|
LoRa.beginPacket();
|
|
LoRa.write(header);
|
|
written = 1;
|
|
}
|
|
}
|
|
|
|
LoRa.endPacket();
|
|
led_tx_off();
|
|
|
|
lora_receive();
|
|
} else {
|
|
// In promiscuous mode, we only send out
|
|
// plain raw LoRa packets with a maximum
|
|
// payload of 255 bytes
|
|
led_tx_on();
|
|
uint16_t written = 0;
|
|
|
|
// Cap packets at 255 bytes
|
|
if (size > SINGLE_MTU) {
|
|
size = SINGLE_MTU;
|
|
}
|
|
|
|
// If implicit header mode has been set,
|
|
// set packet length to payload data length
|
|
if (!implicit) {
|
|
LoRa.beginPacket();
|
|
} else {
|
|
LoRa.beginPacket(size);
|
|
}
|
|
|
|
for (uint16_t i=0; i < size; i++) {
|
|
LoRa.write(tbuf[i]);
|
|
|
|
written++;
|
|
}
|
|
LoRa.endPacket();
|
|
led_tx_off();
|
|
|
|
lora_receive();
|
|
}
|
|
} else {
|
|
kiss_indicate_error(ERROR_TXFAILED);
|
|
led_indicate_error(5);
|
|
}
|
|
}
|
|
|
|
void serialCallback(uint8_t sbyte) {
|
|
if (IN_FRAME && sbyte == FEND && command == CMD_DATA) {
|
|
IN_FRAME = false;
|
|
|
|
if (!fifo16_isfull(&packet_starts) && queued_bytes < CONFIG_QUEUE_SIZE) {
|
|
uint16_t s = current_packet_start;
|
|
int16_t e = queue_cursor-1; if (e == -1) e = CONFIG_QUEUE_SIZE-1;
|
|
uint16_t l;
|
|
|
|
if (s != e) {
|
|
l = (s < e) ? e - s + 1 : CONFIG_QUEUE_SIZE - s + e + 1;
|
|
} else {
|
|
l = 1;
|
|
}
|
|
|
|
if (l >= MIN_L) {
|
|
queue_height++;
|
|
|
|
fifo16_push(&packet_starts, s);
|
|
fifo16_push(&packet_lengths, l);
|
|
|
|
current_packet_start = queue_cursor;
|
|
}
|
|
|
|
}
|
|
|
|
} else if (sbyte == FEND) {
|
|
IN_FRAME = true;
|
|
command = CMD_UNKNOWN;
|
|
frame_len = 0;
|
|
} else if (IN_FRAME && frame_len < MTU) {
|
|
// Have a look at the command byte first
|
|
if (frame_len == 0 && command == CMD_UNKNOWN) {
|
|
command = sbyte;
|
|
} else if (command == CMD_DATA) {
|
|
if (bt_state != BT_STATE_CONNECTED) cable_state = CABLE_STATE_CONNECTED;
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (queue_height < CONFIG_QUEUE_MAX_LENGTH && queued_bytes < CONFIG_QUEUE_SIZE) {
|
|
queued_bytes++;
|
|
packet_queue[queue_cursor++] = sbyte;
|
|
if (queue_cursor == CONFIG_QUEUE_SIZE) queue_cursor = 0;
|
|
}
|
|
}
|
|
} else if (command == CMD_FREQUENCY) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
cbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 4) {
|
|
uint32_t freq = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3];
|
|
|
|
if (freq == 0) {
|
|
kiss_indicate_frequency();
|
|
} else {
|
|
lora_freq = freq;
|
|
if (op_mode == MODE_HOST) setFrequency();
|
|
kiss_indicate_frequency();
|
|
}
|
|
}
|
|
} else if (command == CMD_BANDWIDTH) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
cbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 4) {
|
|
uint32_t bw = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3];
|
|
|
|
if (bw == 0) {
|
|
kiss_indicate_bandwidth();
|
|
} else {
|
|
lora_bw = bw;
|
|
if (op_mode == MODE_HOST) setBandwidth();
|
|
kiss_indicate_bandwidth();
|
|
}
|
|
}
|
|
} else if (command == CMD_TXPOWER) {
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_txpower();
|
|
} else {
|
|
int txp = sbyte;
|
|
if (txp > 17) txp = 17;
|
|
|
|
lora_txp = txp;
|
|
if (op_mode == MODE_HOST) setTXPower();
|
|
kiss_indicate_txpower();
|
|
}
|
|
} else if (command == CMD_SF) {
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_spreadingfactor();
|
|
} else {
|
|
int sf = sbyte;
|
|
if (sf < 6) sf = 6;
|
|
if (sf > 12) sf = 12;
|
|
|
|
lora_sf = sf;
|
|
if (op_mode == MODE_HOST) setSpreadingFactor();
|
|
kiss_indicate_spreadingfactor();
|
|
}
|
|
} else if (command == CMD_CR) {
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_codingrate();
|
|
} else {
|
|
int cr = sbyte;
|
|
if (cr < 5) cr = 5;
|
|
if (cr > 8) cr = 8;
|
|
|
|
lora_cr = cr;
|
|
if (op_mode == MODE_HOST) setCodingRate();
|
|
kiss_indicate_codingrate();
|
|
}
|
|
} else if (command == CMD_IMPLICIT) {
|
|
set_implicit_length(sbyte);
|
|
kiss_indicate_implicit_length();
|
|
} else if (command == CMD_LEAVE) {
|
|
if (sbyte == 0xFF) {
|
|
cable_state = CABLE_STATE_DISCONNECTED;
|
|
current_rssi = -292;
|
|
last_rssi = -292;
|
|
last_rssi_raw = 0x00;
|
|
last_snr_raw = 0x80;
|
|
}
|
|
} else if (command == CMD_RADIO_STATE) {
|
|
if (bt_state != BT_STATE_CONNECTED) cable_state = CABLE_STATE_CONNECTED;
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_radiostate();
|
|
} else if (sbyte == 0x00) {
|
|
stopRadio();
|
|
kiss_indicate_radiostate();
|
|
} else if (sbyte == 0x01) {
|
|
startRadio();
|
|
kiss_indicate_radiostate();
|
|
}
|
|
} else if (command == CMD_STAT_RX) {
|
|
kiss_indicate_stat_rx();
|
|
} else if (command == CMD_STAT_TX) {
|
|
kiss_indicate_stat_tx();
|
|
} else if (command == CMD_STAT_RSSI) {
|
|
kiss_indicate_stat_rssi();
|
|
} else if (command == CMD_RADIO_LOCK) {
|
|
update_radio_lock();
|
|
kiss_indicate_radio_lock();
|
|
} else if (command == CMD_BLINK) {
|
|
led_indicate_info(sbyte);
|
|
} else if (command == CMD_RANDOM) {
|
|
kiss_indicate_random(getRandom());
|
|
} else if (command == CMD_DETECT) {
|
|
if (sbyte == DETECT_REQ) {
|
|
if (bt_state != BT_STATE_CONNECTED) cable_state = CABLE_STATE_CONNECTED;
|
|
kiss_indicate_detect();
|
|
}
|
|
} else if (command == CMD_PROMISC) {
|
|
if (sbyte == 0x01) {
|
|
promisc_enable();
|
|
} else if (sbyte == 0x00) {
|
|
promisc_disable();
|
|
}
|
|
kiss_indicate_promisc();
|
|
} else if (command == CMD_READY) {
|
|
if (!queueFull()) {
|
|
kiss_indicate_ready();
|
|
} else {
|
|
kiss_indicate_not_ready();
|
|
}
|
|
} else if (command == CMD_UNLOCK_ROM) {
|
|
if (sbyte == ROM_UNLOCK_BYTE) {
|
|
unlock_rom();
|
|
}
|
|
} else if (command == CMD_RESET) {
|
|
if (sbyte == CMD_RESET_BYTE) {
|
|
hard_reset();
|
|
}
|
|
} else if (command == CMD_ROM_READ) {
|
|
kiss_dump_eeprom();
|
|
} else if (command == CMD_ROM_WRITE) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
cbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 2) {
|
|
eeprom_write(cbuf[0], cbuf[1]);
|
|
}
|
|
} else if (command == CMD_FW_VERSION) {
|
|
kiss_indicate_version();
|
|
} else if (command == CMD_PLATFORM) {
|
|
kiss_indicate_platform();
|
|
} else if (command == CMD_MCU) {
|
|
kiss_indicate_mcu();
|
|
} else if (command == CMD_BOARD) {
|
|
kiss_indicate_board();
|
|
} else if (command == CMD_CONF_SAVE) {
|
|
eeprom_conf_save();
|
|
} else if (command == CMD_CONF_DELETE) {
|
|
eeprom_conf_delete();
|
|
} else if (command == CMD_FB_EXT) {
|
|
#if HAS_DISPLAY == true
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_fbstate();
|
|
} else if (sbyte == 0x00) {
|
|
ext_fb_disable();
|
|
kiss_indicate_fbstate();
|
|
} else if (sbyte == 0x01) {
|
|
ext_fb_enable();
|
|
kiss_indicate_fbstate();
|
|
}
|
|
#endif
|
|
} else if (command == CMD_FB_WRITE) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
cbuf[frame_len++] = sbyte;
|
|
}
|
|
#if HAS_DISPLAY
|
|
if (frame_len == 9) {
|
|
uint8_t line = cbuf[0];
|
|
if (line > 63) line = 63;
|
|
int fb_o = line*8;
|
|
memcpy(fb+fb_o, cbuf+1, 8);
|
|
}
|
|
#endif
|
|
} else if (command == CMD_FB_READ) {
|
|
if (sbyte != 0x00) {
|
|
kiss_indicate_fb();
|
|
}
|
|
} else if (command == CMD_BT_CTRL) {
|
|
#if HAS_BLUETOOTH
|
|
if (sbyte == 0x00) {
|
|
bt_stop();
|
|
bt_conf_save(false);
|
|
} else if (sbyte == 0x01) {
|
|
bt_start();
|
|
bt_conf_save(true);
|
|
} else if (sbyte == 0x02) {
|
|
bt_enable_pairing();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portMUX_TYPE update_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
#endif
|
|
|
|
void updateModemStatus() {
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portENTER_CRITICAL(&update_lock);
|
|
#endif
|
|
|
|
uint8_t status = LoRa.modemStatus();
|
|
current_rssi = LoRa.currentRssi();
|
|
last_status_update = millis();
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portEXIT_CRITICAL(&update_lock);
|
|
#endif
|
|
|
|
if (status & SIG_DETECT == SIG_DETECT) { stat_signal_detected = true; } else { stat_signal_detected = false; }
|
|
if (status & SIG_SYNCED == SIG_SYNCED) { stat_signal_synced = true; } else { stat_signal_synced = false; }
|
|
if (status & RX_ONGOING == RX_ONGOING) { stat_rx_ongoing = true; } else { stat_rx_ongoing = false; }
|
|
|
|
if (stat_signal_detected || stat_signal_synced || stat_rx_ongoing) {
|
|
if (dcd_count < dcd_threshold) {
|
|
dcd_count++;
|
|
dcd = true;
|
|
} else {
|
|
dcd = true;
|
|
dcd_led = true;
|
|
}
|
|
} else {
|
|
if (dcd_count > 0) {
|
|
dcd_count--;
|
|
} else {
|
|
dcd_led = false;
|
|
}
|
|
dcd = false;
|
|
}
|
|
|
|
if (dcd_led) {
|
|
led_rx_on();
|
|
} else {
|
|
led_rx_off();
|
|
}
|
|
}
|
|
|
|
void checkModemStatus() {
|
|
if (millis()-last_status_update >= status_interval_ms) {
|
|
updateModemStatus();
|
|
}
|
|
}
|
|
|
|
void validateStatus() {
|
|
#if MCU_VARIANT == MCU_1284P
|
|
uint8_t boot_flags = OPTIBOOT_MCUSR;
|
|
uint8_t F_POR = PORF;
|
|
uint8_t F_BOR = BORF;
|
|
uint8_t F_WDR = WDRF;
|
|
#elif MCU_VARIANT == MCU_2560
|
|
uint8_t boot_flags = OPTIBOOT_MCUSR;
|
|
if (boot_flags == 0x00) boot_flags = 0x03;
|
|
uint8_t F_POR = PORF;
|
|
uint8_t F_BOR = BORF;
|
|
uint8_t F_WDR = WDRF;
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
// TODO: Get ESP32 boot flags
|
|
uint8_t boot_flags = 0x02;
|
|
uint8_t F_POR = 0x00;
|
|
uint8_t F_BOR = 0x00;
|
|
uint8_t F_WDR = 0x01;
|
|
#endif
|
|
|
|
if (boot_flags & (1<<F_POR)) {
|
|
boot_vector = START_FROM_POWERON;
|
|
} else if (boot_flags & (1<<F_BOR)) {
|
|
boot_vector = START_FROM_BROWNOUT;
|
|
} else if (boot_flags & (1<<F_WDR)) {
|
|
boot_vector = START_FROM_BOOTLOADER;
|
|
} else {
|
|
Serial.write("Error, indeterminate boot vector\r\n");
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) update_display();
|
|
#endif
|
|
led_indicate_boot_error();
|
|
}
|
|
|
|
if (boot_vector == START_FROM_BOOTLOADER || boot_vector == START_FROM_POWERON) {
|
|
if (eeprom_lock_set()) {
|
|
if (eeprom_product_valid() && eeprom_model_valid() && eeprom_hwrev_valid()) {
|
|
if (eeprom_checksum_valid()) {
|
|
hw_ready = true;
|
|
|
|
if (eeprom_have_conf()) {
|
|
eeprom_conf_load();
|
|
op_mode = MODE_TNC;
|
|
startRadio();
|
|
}
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
Serial.write("Error, incorrect boot vector\r\n");
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) update_display();
|
|
#endif
|
|
led_indicate_boot_error();
|
|
}
|
|
}
|
|
|
|
void loop() {
|
|
if (radio_online) {
|
|
checkModemStatus();
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
if (packet_ready) {
|
|
portENTER_CRITICAL(&update_lock);
|
|
last_rssi = LoRa.packetRssi();
|
|
last_snr_raw = LoRa.packetSnrRaw();
|
|
portEXIT_CRITICAL(&update_lock);
|
|
kiss_indicate_stat_rssi();
|
|
kiss_indicate_stat_snr();
|
|
kiss_write_packet();
|
|
}
|
|
#endif
|
|
|
|
if (queue_height > 0) {
|
|
if (!dcd_waiting) updateModemStatus();
|
|
|
|
if (!dcd && !dcd_led) {
|
|
if (dcd_waiting) delay(lora_rx_turnaround_ms);
|
|
|
|
updateModemStatus();
|
|
|
|
if (!dcd) {
|
|
dcd_waiting = false;
|
|
|
|
flushQueue();
|
|
|
|
}
|
|
} else {
|
|
dcd_waiting = true;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
if (hw_ready) {
|
|
led_indicate_standby();
|
|
} else {
|
|
led_indicate_not_ready();
|
|
stopRadio();
|
|
}
|
|
}
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
buffer_serial();
|
|
if (!fifo_isempty(&serialFIFO)) serial_poll();
|
|
#else
|
|
if (!fifo_isempty_locked(&serialFIFO)) serial_poll();
|
|
#endif
|
|
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) update_display();
|
|
#endif
|
|
|
|
#if HAS_PMU
|
|
if (pmu_ready) update_pmu();
|
|
#endif
|
|
|
|
#if HAS_BLUETOOTH
|
|
if (!bt_init_ran && millis() > 1000) {
|
|
bt_init();
|
|
bt_init_ran = true;
|
|
}
|
|
|
|
if (bt_ready) update_bt();
|
|
#endif
|
|
}
|
|
|
|
volatile bool serial_polling = false;
|
|
void serial_poll() {
|
|
serial_polling = true;
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
while (!fifo_isempty_locked(&serialFIFO)) {
|
|
#else
|
|
while (!fifo_isempty(&serialFIFO)) {
|
|
#endif
|
|
char sbyte = fifo_pop(&serialFIFO);
|
|
serialCallback(sbyte);
|
|
}
|
|
|
|
serial_polling = false;
|
|
}
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
#define MAX_CYCLES 20
|
|
#else
|
|
#define MAX_CYCLES 10
|
|
#endif
|
|
void buffer_serial() {
|
|
if (!serial_buffering) {
|
|
serial_buffering = true;
|
|
|
|
uint8_t c = 0;
|
|
|
|
#if HAS_BLUETOOTH
|
|
while (
|
|
c < MAX_CYCLES &&
|
|
( (bt_state != BT_STATE_CONNECTED && Serial.available()) || (bt_state == BT_STATE_CONNECTED && SerialBT.available()) )
|
|
)
|
|
#else
|
|
while (c < MAX_CYCLES && Serial.available())
|
|
#endif
|
|
{
|
|
c++;
|
|
|
|
#if MCU_VARIANT != MCU_ESP32
|
|
if (!fifo_isfull_locked(&serialFIFO)) {
|
|
fifo_push_locked(&serialFIFO, Serial.read());
|
|
}
|
|
#else
|
|
if (HAS_BLUETOOTH && bt_state == BT_STATE_CONNECTED) {
|
|
if (!fifo_isfull(&serialFIFO)) {
|
|
fifo_push(&serialFIFO, SerialBT.read());
|
|
}
|
|
} else {
|
|
if (!fifo_isfull(&serialFIFO)) {
|
|
fifo_push(&serialFIFO, Serial.read());
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
serial_buffering = false;
|
|
}
|
|
}
|
|
|
|
void serial_interrupt_init() {
|
|
#if MCU_VARIANT == MCU_1284P
|
|
TCCR3A = 0;
|
|
TCCR3B = _BV(CS10) |
|
|
_BV(WGM33)|
|
|
_BV(WGM32);
|
|
|
|
// Buffer incoming frames every 1ms
|
|
ICR3 = 16000;
|
|
|
|
TIMSK3 = _BV(ICIE3);
|
|
|
|
#elif MCU_VARIANT == MCU_2560
|
|
// TODO: This should probably be updated for
|
|
// atmega2560 support. Might be source of
|
|
// reported issues from snh.
|
|
TCCR3A = 0;
|
|
TCCR3B = _BV(CS10) |
|
|
_BV(WGM33)|
|
|
_BV(WGM32);
|
|
|
|
// Buffer incoming frames every 1ms
|
|
ICR3 = 16000;
|
|
|
|
TIMSK3 = _BV(ICIE3);
|
|
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
// No interrupt-based polling on ESP32
|
|
#endif
|
|
|
|
}
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
ISR(TIMER3_CAPT_vect) {
|
|
buffer_serial();
|
|
}
|
|
#endif
|