2020-04-27 17:28:14 +02:00
|
|
|
##########################################################
|
|
|
|
# This RNS example demonstrates how to set up a link to #
|
|
|
|
# a destination, and pass data back and forth over it. #
|
|
|
|
##########################################################
|
|
|
|
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import time
|
|
|
|
import argparse
|
|
|
|
import RNS
|
|
|
|
|
|
|
|
# Let's define an app name. We'll use this for all
|
|
|
|
# destinations we create. Since this echo example
|
|
|
|
# is part of a range of example utilities, we'll put
|
|
|
|
# them all within the app namespace "example_utilities"
|
|
|
|
APP_NAME = "example_utilitites"
|
|
|
|
|
|
|
|
##########################################################
|
|
|
|
#### Server Part #########################################
|
|
|
|
##########################################################
|
|
|
|
|
|
|
|
# A reference to the latest client link that connected
|
|
|
|
latest_client_link = None
|
|
|
|
|
|
|
|
# This initialisation is executed when the users chooses
|
|
|
|
# to run as a server
|
|
|
|
def server(configpath):
|
|
|
|
# We must first initialise Reticulum
|
|
|
|
reticulum = RNS.Reticulum(configpath)
|
|
|
|
|
|
|
|
# Randomly create a new identity for our link example
|
|
|
|
server_identity = RNS.Identity()
|
|
|
|
|
|
|
|
# We create a destination that clients can connect to. We
|
|
|
|
# want clients to create links to this destination, so we
|
|
|
|
# need to create a "single" destination type.
|
|
|
|
server_destination = RNS.Destination(server_identity, RNS.Destination.IN, RNS.Destination.SINGLE, APP_NAME, "linkexample")
|
|
|
|
|
|
|
|
# We configure a function that will get called every time
|
|
|
|
# a new client creates a link to this destination.
|
|
|
|
server_destination.link_established_callback(client_connected)
|
|
|
|
|
|
|
|
# Everything's ready!
|
|
|
|
# Let's Wait for client requests or user input
|
|
|
|
server_loop(server_destination)
|
|
|
|
|
|
|
|
def server_loop(destination):
|
|
|
|
# Let the user know that everything is ready
|
|
|
|
RNS.log("Link example "+RNS.prettyhexrep(destination.hash)+" running, waiting for a connection.")
|
|
|
|
RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)")
|
|
|
|
|
|
|
|
# We enter a loop that runs until the users exits.
|
|
|
|
# If the user hits enter, we will announce our server
|
|
|
|
# destination on the network, which will let clients
|
|
|
|
# know how to create messages directed towards it.
|
|
|
|
while True:
|
|
|
|
entered = input()
|
|
|
|
destination.announce()
|
|
|
|
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))
|
|
|
|
|
|
|
|
# When a client establishes a link to our server
|
|
|
|
# destination, this function will be called with
|
|
|
|
# a reference to the link.
|
|
|
|
def client_connected(link):
|
|
|
|
global latest_client_link
|
|
|
|
|
|
|
|
RNS.log("Client connected")
|
|
|
|
link.link_closed_callback(client_disconnected)
|
|
|
|
link.packet_callback(server_packet_received)
|
|
|
|
latest_client_link = link
|
|
|
|
|
|
|
|
def client_disconnected(link):
|
|
|
|
RNS.log("Client disconnected")
|
|
|
|
|
|
|
|
def server_packet_received(message, packet):
|
|
|
|
global latest_client_link
|
|
|
|
|
|
|
|
text = message.decode("utf-8")
|
|
|
|
RNS.log("Received data on the link: "+text)
|
|
|
|
|
|
|
|
reply_text = "I got \""+text+"\" from you"
|
|
|
|
reply_data = reply_text.encode("utf-8")
|
|
|
|
RNS.Packet(latest_client_link, reply_data).send()
|
|
|
|
|
|
|
|
|
|
|
|
##########################################################
|
|
|
|
#### Client Part #########################################
|
|
|
|
##########################################################
|
|
|
|
|
|
|
|
# A reference to the server link
|
|
|
|
server_link = None
|
|
|
|
|
|
|
|
# This initialisation is executed when the users chooses
|
|
|
|
# to run as a client
|
|
|
|
def client(destination_hexhash, configpath):
|
|
|
|
# We need a binary representation of the destination
|
|
|
|
# hash that was entered on the command line
|
|
|
|
try:
|
|
|
|
if len(destination_hexhash) != 20:
|
|
|
|
raise ValueError("Destination length is invalid, must be 20 hexadecimal characters (10 bytes)")
|
|
|
|
destination_hash = bytes.fromhex(destination_hexhash)
|
|
|
|
except:
|
|
|
|
RNS.log("Invalid destination entered. Check your input!\n")
|
|
|
|
exit()
|
|
|
|
|
|
|
|
# We must first initialise Reticulum
|
|
|
|
reticulum = RNS.Reticulum(configpath)
|
|
|
|
|
|
|
|
# Check if we know a path to the destination
|
|
|
|
if not RNS.Transport.hasPath(destination_hash):
|
|
|
|
RNS.log("Destination is not yet known. Requesting path and waiting for announce to arrive...")
|
|
|
|
RNS.Transport.requestPath(destination_hash)
|
|
|
|
while not RNS.Transport.hasPath(destination_hash):
|
|
|
|
time.sleep(0.1)
|
|
|
|
|
|
|
|
# Recall the server identity
|
|
|
|
server_identity = RNS.Identity.recall(destination_hash)
|
|
|
|
|
|
|
|
# Inform the user that we'll begin connecting
|
|
|
|
RNS.log("Establishing link with server...")
|
|
|
|
|
|
|
|
# When the server identity is known, we set
|
|
|
|
# up a destination
|
|
|
|
server_destination = RNS.Destination(server_identity, RNS.Destination.OUT, RNS.Destination.SINGLE, APP_NAME, "linkexample")
|
|
|
|
|
|
|
|
# And create a link
|
|
|
|
link = RNS.Link(server_destination)
|
|
|
|
|
|
|
|
# We set a callback that will get executed
|
|
|
|
# every time a packet is received over the
|
|
|
|
# link
|
|
|
|
link.packet_callback(client_packet_received)
|
|
|
|
|
|
|
|
# We'll also set up functions to inform the
|
|
|
|
# user when the link is established or closed
|
|
|
|
link.link_established_callback(link_established)
|
|
|
|
link.link_closed_callback(link_closed)
|
|
|
|
|
|
|
|
# Everything is set up, so let's enter a loop
|
|
|
|
# for the user to interact with the example
|
|
|
|
client_loop()
|
|
|
|
|
|
|
|
def client_loop():
|
|
|
|
global server_link
|
|
|
|
|
|
|
|
# Wait for the link to become active
|
|
|
|
while not server_link:
|
|
|
|
time.sleep(0.1)
|
|
|
|
|
|
|
|
should_quit = False
|
|
|
|
while not should_quit:
|
2020-05-14 12:18:40 +02:00
|
|
|
try:
|
|
|
|
print("> ", end=" ")
|
|
|
|
text = input()
|
|
|
|
|
|
|
|
# Check if we should quit the example
|
|
|
|
if text == "quit" or text == "q" or text == "exit":
|
|
|
|
should_quit = True
|
|
|
|
server_link.teardown()
|
|
|
|
|
|
|
|
# If not, send the entered text over the link
|
|
|
|
if text != "":
|
|
|
|
data = text.encode("utf-8")
|
|
|
|
RNS.Packet(server_link, data).send()
|
|
|
|
except Exception as e:
|
2020-04-27 17:28:14 +02:00
|
|
|
should_quit = True
|
|
|
|
server_link.teardown()
|
|
|
|
|
|
|
|
# This function is called when a link
|
|
|
|
# has been established with the server
|
|
|
|
def link_established(link):
|
|
|
|
# We store a reference to the link
|
|
|
|
# instance for later use
|
|
|
|
global server_link
|
|
|
|
server_link = link
|
|
|
|
|
|
|
|
# Inform the user that the server is
|
|
|
|
# connected
|
|
|
|
RNS.log("Link established with server, enter some text to send, or \"quit\" to quit")
|
|
|
|
|
|
|
|
# When a link is closed, we'll inform the
|
|
|
|
# user, and exit the program
|
|
|
|
def link_closed(link):
|
|
|
|
if link.teardown_reason == RNS.Link.TIMEOUT:
|
|
|
|
RNS.log("The link timed out, exiting now")
|
|
|
|
elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
|
|
|
|
RNS.log("The link was closed by the server, exiting now")
|
|
|
|
else:
|
|
|
|
RNS.log("Link closed, exiting now")
|
|
|
|
|
|
|
|
RNS.Reticulum.exit_handler()
|
|
|
|
time.sleep(1.5)
|
|
|
|
os._exit(0)
|
|
|
|
|
|
|
|
# When a packet is received over the link, we
|
|
|
|
# simply print out the data.
|
|
|
|
def client_packet_received(message, packet):
|
|
|
|
text = message.decode("utf-8")
|
|
|
|
RNS.log("Received data on the link: "+text)
|
|
|
|
print("> ", end=" ")
|
|
|
|
sys.stdout.flush()
|
|
|
|
|
|
|
|
|
|
|
|
##########################################################
|
|
|
|
#### Program Startup #####################################
|
|
|
|
##########################################################
|
|
|
|
|
|
|
|
# This part of the program runs at startup,
|
|
|
|
# and parses input of from the user, and then
|
|
|
|
# starts up the desired program mode.
|
|
|
|
if __name__ == "__main__":
|
|
|
|
try:
|
|
|
|
parser = argparse.ArgumentParser(description="Simple link example")
|
|
|
|
parser.add_argument("-s", "--server", action="store_true", help="wait for incoming link requests from clients")
|
|
|
|
parser.add_argument("--config", action="store", default=None, help="path to alternative Reticulum config directory", type=str)
|
|
|
|
parser.add_argument("destination", nargs="?", default=None, help="hexadecimal hash of the server destination", type=str)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if args.config:
|
|
|
|
configarg = args.config
|
|
|
|
else:
|
|
|
|
configarg = None
|
|
|
|
|
|
|
|
if args.server:
|
|
|
|
server(configarg)
|
|
|
|
else:
|
|
|
|
if (args.destination == None):
|
|
|
|
print("")
|
|
|
|
parser.print_help()
|
|
|
|
print("")
|
|
|
|
else:
|
|
|
|
client(args.destination, configarg)
|
|
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print("")
|
|
|
|
exit()
|