import time from math import pi, sin, cos, acos, tan, atan, atan2 from math import radians, degrees, sqrt # WGS84 Parameters # a = 6378137.0, # f = 0.0033528106647474805, # e2 = 0.0066943799901413165, # b = 6356752.314245179, # Planetary metrics equatorial_radius = 6378.137 *1e3 polar_radius = 6356.7523142 *1e3 ellipsoid_flattening = 1-(polar_radius/equatorial_radius) eccentricity_squared = 2*ellipsoid_flattening-pow(ellipsoid_flattening,2) ############################### mean_earth_radius = (1/3)*(2*equatorial_radius+polar_radius) def central_angle(c1, c2): lat1 = radians(c1[0]); lon1 = radians(c1[1]) lat2 = radians(c2[0]); lon2 = radians(c2[1]) d_lat = abs(lat1-lat2) d_lon = abs(lon1-lon2) ca = acos( sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(d_lon) ) return ca def geocentric_latitude(geodetic_latitude): e2 = eccentricity_squared lat = radians(geodetic_latitude) return degrees(atan((1.0 - e2) * tan(lat))) def geodetic_latitude(geocentric_latitude): e2 = eccentricity_squared lat = radians(geocentric_latitude) return degrees(atan( (1/(1.0 - e2)) * tan(lat))) def ellipsoid_radius_at(latitude): lat = radians(latitude) a = equatorial_radius; b = polar_radius; a2 = pow(a,2); b2 = pow(b,2) r = sqrt( ( pow(a2*cos(lat), 2) + pow(b2*sin(lat), 2) ) / ( pow(a*cos(lat), 2) + pow(b*sin(lat), 2) ) ) return r def euclidian_point(latitude, longtitude, altitude=0, ellipsoid=True): # Convert latitude and longtitude to radians # and get ellipsoid or sphere radius lat = radians(latitude); lon = radians(longtitude) r = ellipsoid_radius_at(latitude) if ellipsoid else mean_earth_radius # Calculate euclidian coordinates from longtitude # and geocentric latitude. gclat = radians(geocentric_latitude(latitude)) if ellipsoid else lat x = cos(lon)*cos(gclat)*r y = cos(gclat)*sin(lon)*r z = sin(gclat)*r # Calculate surface normal of ellipsoid at # coordinates to add altitude to point normal_x = cos(lat)*cos(lon) normal_y = cos(lat)*sin(lon) normal_z = sin(lat) if altitude != 0: x += altitude*normal_x y += altitude*normal_y z += altitude*normal_z return (x,y,z, normal_x, normal_y, normal_z) def distance(p1, p2): dx = p1[0]-p2[0] dy = p1[1]-p2[1] dz = p1[2]-p2[2] return sqrt(dx*dx + dy*dy + dz*dz) def euclidian_distance(c1, c2, ellipsoid=True): lat1 = c1[0]; lon1 = c1[1]; alt1 = c1[2] lat2 = c2[0]; lon2 = c2[1]; alt2 = c2[2] if len(c1) >= 2 and len(c2) >= 2: if len(c1) == 2: c1 += (0,) if len(c2) == 2: c2 += (0,) return distance( euclidian_point(lat1, lon1, alt1, ellipsoid=ellipsoid), euclidian_point(lat2, lon2, alt2, ellipsoid=ellipsoid) ) else: return None def spherical_distance(c1, c2, altitude=0, r=mean_earth_radius): d = (r+altitude)*central_angle(c1, c2) return d def ellipsoid_distance(c1, c2): # TODO: Update this to the method described by Karney in 2013 # instead of using Vincenty's algorithm. try: if c1[:2] == c2[:2]: return 0 if c1[0] == 0.0: c1 = (1e-6, c1[1]) a = equatorial_radius f = ellipsoid_flattening b = (1 - f)*a # polar radius tolerance = 1e-9 # to stop iteration phi1, phi2 = radians(c1[0]), radians(c2[0]) U1 = atan((1-f)*tan(phi1)) U2 = atan((1-f)*tan(phi2)) L1, L2 = radians(c1[1]), radians(c2[1]) L = L2 - L1 lambda_old = L + 0 max_iterations = 10000 iteration = 0 timeout = 1.0 st = time.time() while True: iteration += 1 t = (cos(U2)*sin(lambda_old))**2 t += (cos(U1)*sin(U2) - sin(U1)*cos(U2)*cos(lambda_old))**2 sin_sigma = t**0.5 cos_sigma = sin(U1)*sin(U2) + cos(U1)*cos(U2)*cos(lambda_old) sigma = atan2(sin_sigma, cos_sigma) sin_alpha = cos(U1)*cos(U2)*sin(lambda_old) / sin_sigma cos_sq_alpha = 1 - sin_alpha**2 cos_2sigma_m = cos_sigma - 2*sin(U1)*sin(U2)/cos_sq_alpha C = f*cos_sq_alpha*(4 + f*(4-3*cos_sq_alpha))/16 t = sigma + C*sin_sigma*(cos_2sigma_m + C*cos_sigma*(-1 + 2*cos_2sigma_m**2)) lambda_new = L + (1 - C)*f*sin_alpha*t if abs(lambda_new - lambda_old) <= tolerance: break else: lambda_old = lambda_new if iteration%1000 == 0: if iteration >= max_iterations: return None if time.time() > st+timeout: return None u2 = cos_sq_alpha*((a**2 - b**2)/b**2) A = 1 + (u2/16384)*(4096 + u2*(-768+u2*(320 - 175*u2))) B = (u2/1024)*(256 + u2*(-128 + u2*(74 - 47*u2))) t = cos_2sigma_m + 0.25*B*(cos_sigma*(-1 + 2*cos_2sigma_m**2)) t -= (B/6)*cos_2sigma_m*(-3 + 4*sin_sigma**2)*(-3 + 4*cos_2sigma_m**2) delta_sigma = B * sin_sigma * t s = b*A*(sigma - delta_sigma) return s except Exception as e: return None def azalt(c1, c2, ellipsoid=True): c2rp = rotate_globe(c1, c2, ellipsoid=ellipsoid) print(str(c2rp)) altitude = None azimuth = None if (c2rp[2]*c2rp[2]) + (c2rp[1]*c2rp[1]) > 1e-6: theta = degrees(atan2(c2rp[2], c2rp[1])) azimuth = 90.0 - theta if azimuth < 0: azimuth += 360 if azimuth > 360: azimuth -= 360 azimuth = round(azimuth,4) c1p = euclidian_point(c1[0], c1[1], c1[2], ellipsoid=ellipsoid) c2p = euclidian_point(c2[0], c2[1], c2[2], ellipsoid=ellipsoid) nvd = normalised_vector_diff(c2p, c1p) if nvd != None: cax = nvd[0]; cay = nvd[1]; caz = nvd[2] cnx = c1p[3]; cny = c1p[4]; cnz = c1p[5] a = acos(cax*cnx + cay*cny + caz*cnz) altitude = round(90 - degrees(a),4) return (azimuth, altitude,4) def normalised_vector_diff(b, a): dx = b[0] - a[0] dy = b[1] - a[1] dz = b[2] - a[2] d_squared = dx*dx + dy*dy + dz*dz if d_squared == 0: return None d = sqrt(d_squared) return (dx/d, dy/d, dz/d) def rotate_globe(c1, c2, ellipsoid=True): if len(c1) >= 2 and len(c2) >= 2: if len(c1) == 2: c1 += (0,) if len(c2) == 2: c2 += (0,) c2r = (c2[0], c2[1]-c1[1], c2[2]) c2rp = euclidian_point(c2r[0], c2r[1], c2r[2], ellipsoid=ellipsoid) lat1 = -1*radians(c1[0]) if ellipsoid: lat1 = radians(geocentric_latitude(degrees(lat1))) lat1cos = cos(lat1) lat1sin = sin(lat1) c2x = (c2rp[0] * lat1cos) - (c2rp[2] * lat1sin) c2y = c2rp[1] c2z = (c2rp[0] * lat1sin) + (c2rp[2] * lat1cos) return (c2x, c2y, c2z) def orthodromic_distance(c1, c2, ellipsoid=True): if ellipsoid: return ellipsoid_distance(c1, c2) else: return spherical_distance(c1, c2) # def tests(): # import RNS # import numpy as np # from geographiclib.geodesic import Geodesic # geod = Geodesic.WGS84 # coords = [ # [(51.2308, 4.38703, 0.0), (47.699437, 9.268651, 0.0)], # [(51.230800, 4.38703, 0.0), (51.230801, 4.38703, 0.0)], # [(35.3524, 135.0302, 100), (35.3532,135.0305, 500)], # [(57.758793, 22.605194, 0.0), (43.048838, -9.241343, 0.0)], # [(0.0, 0.0, 0.0), (0.0, 0.0, 0.0)], # [(-90.0, 0.0, 0.0), (90.0, 0.0, 0.0)], # [(-90.0, 0.0, 0.0), (78.0, 0.0, 0.0)], # [(0.0, 0.0, 0.0), (0.5, 179.5, 0.0)], # [(0.7, 0.0, 0.0), (0.0, -180.0, 0.0)], # ] # for cs in coords: # c1 = cs[0]; c2 = cs[1] # print("Testing: "+str(c1)+" -> "+str(c2)) # us = time.time() # ld = c1+c2; g = geod.Inverse(c1[0], c1[1], c2[0], c2[1]) # print("Lib computed in "+str(round((time.time()-us)*1e6, 3))+"us") # us = time.time() # eld = orthodromic_distance(c1,c2,ellipsoid=True) # if eld: # print("Own computed in "+str(round((time.time()-us)*1e6, 3))+"us") # else: # print("Own timed out in "+str(round((time.time()-us)*1e6, 3))+"us") # ed_own = euclidian_distance(c1,c2,ellipsoid=True) # sd_own = orthodromic_distance(c1,c2,ellipsoid=False) # aa = azalt(c1,c2,ellipsoid=True) # fac = 1 # if eld: print("LibDiff = "+RNS.prettydistance(g['s12']-eld)+f" {fac*g['s12']-fac*eld}") # print("Spherical = "+RNS.prettydistance(sd_own)+f" {fac*sd_own}") # # print("EllipLib = "+RNS.prettydistance(g['s12'])+f" {fac*g['s12']}") # if eld: print("Ellipsoid = "+RNS.prettydistance(eld)+f" {fac*eld}") # print("Euclidian = "+RNS.prettydistance(ed_own)+f" {fac*ed_own}") # print("AzAlt = "+f" {aa[0]} / {aa[1]}") # print("")