arduino-esp32/cores/esp32/esp32-hal-uart.c

587 lines
14 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
2016-10-06 13:21:30 +02:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-uart.h"
#include "esp32-hal.h"
2016-10-06 13:21:30 +02:00
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "driver/uart.h"
#include "hal/uart_ll.h"
#include "soc/soc_caps.h"
#include "soc/uart_struct.h"
2016-10-06 13:21:30 +02:00
static int s_uart_debug_nr = 0;
struct uart_struct_t {
#if !CONFIG_DISABLE_HAL_LOCKS
2016-10-14 02:07:21 +02:00
xSemaphoreHandle lock;
#endif
uint8_t num;
bool has_peek;
uint8_t peek_byte;
};
#if CONFIG_DISABLE_HAL_LOCKS
#define UART_MUTEX_LOCK()
#define UART_MUTEX_UNLOCK()
static uart_t _uart_bus_array[] = {
{0, false, 0},
#if SOC_UART_NUM > 1
{1, false, 0},
#endif
#if SOC_UART_NUM > 2
{2, false, 0},
#endif
};
#else
#define UART_MUTEX_LOCK() do {} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS)
#define UART_MUTEX_UNLOCK() xSemaphoreGive(uart->lock)
2016-10-14 02:07:21 +02:00
static uart_t _uart_bus_array[] = {
{NULL, 0, false, 0},
#if SOC_UART_NUM > 1
{NULL, 1, false, 0},
#endif
#if SOC_UART_NUM > 2
{NULL, 2, false, 0},
#endif
};
#endif
bool uartIsDriverInstalled(uart_t* uart)
{
if(uart == NULL) {
return 0;
2016-10-06 13:21:30 +02:00
}
if (uart_is_driver_installed(uart->num)) {
return true;
2016-10-06 13:21:30 +02:00
}
return false;
}
2016-10-06 13:21:30 +02:00
void uartSetPins(uart_t* uart, uint8_t rxPin, uint8_t txPin)
{
if(uart == NULL || rxPin >= SOC_GPIO_PIN_COUNT || txPin >= SOC_GPIO_PIN_COUNT) {
return;
2016-10-06 13:21:30 +02:00
}
UART_MUTEX_LOCK();
ESP_ERROR_CHECK(uart_set_pin(uart->num, txPin, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
UART_MUTEX_UNLOCK();
}
2016-10-06 13:21:30 +02:00
uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted, uint8_t rxfifo_full_thrhd)
{
if(uart_nr >= SOC_UART_NUM) {
return NULL;
}
2016-10-06 13:21:30 +02:00
if(rxPin == -1 && txPin == -1) {
return NULL;
}
2016-10-06 13:21:30 +02:00
uart_t* uart = &_uart_bus_array[uart_nr];
2016-10-14 02:07:21 +02:00
if (uart_is_driver_installed(uart_nr)) {
uartEnd(uart);
}
#if !CONFIG_DISABLE_HAL_LOCKS
2016-10-14 02:07:21 +02:00
if(uart->lock == NULL) {
uart->lock = xSemaphoreCreateMutex();
if(uart->lock == NULL) {
return NULL;
}
}
#endif
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart_config_t uart_config;
uart_config.baud_rate = baudrate;
uart_config.data_bits = (config & 0xc) >> 2;
uart_config.parity = (config & 0x3);
uart_config.stop_bits = (config & 0x30) >> 4;
uart_config.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
uart_config.rx_flow_ctrl_thresh = rxfifo_full_thrhd;
uart_config.source_clk = UART_SCLK_APB;
ESP_ERROR_CHECK(uart_driver_install(uart_nr, 2*queueLen, 0, 0, NULL, 0));
ESP_ERROR_CHECK(uart_param_config(uart_nr, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(uart_nr, txPin, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
// Is it right or the idea is to swap rx and tx pins?
if (inverted) {
// invert signal for both Rx and Tx
ESP_ERROR_CHECK(uart_set_line_inverse(uart_nr, UART_SIGNAL_TXD_INV | UART_SIGNAL_RXD_INV));
}
UART_MUTEX_UNLOCK();
uartFlush(uart);
2016-10-06 13:21:30 +02:00
return uart;
}
void uartEnd(uart_t* uart)
2016-10-06 13:21:30 +02:00
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart_driver_delete(uart->num);
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartSetRxInvert(uart_t* uart, bool invert)
{
if (uart == NULL)
return;
#if 0
// POTENTIAL ISSUE :: original code only set/reset rxd_inv bit
// IDF or LL set/reset the whole inv_mask!
if (invert)
ESP_ERROR_CHECK(uart_set_line_inverse(uart->num, UART_SIGNAL_RXD_INV));
else
ESP_ERROR_CHECK(uart_set_line_inverse(uart->num, UART_SIGNAL_INV_DISABLE));
#else
// this implementation is better over IDF API because it only affects RXD
// this is supported in ESP32, ESP32-S2 and ESP32-C3
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
if (invert)
hw->conf0.rxd_inv = 1;
else
hw->conf0.rxd_inv = 0;
#endif
}
2016-10-06 13:21:30 +02:00
uint32_t uartAvailable(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
size_t available;
uart_get_buffered_data_len(uart->num, &available);
if (uart->has_peek) available++;
UART_MUTEX_UNLOCK();
return available;
2016-10-06 13:21:30 +02:00
}
uint32_t uartAvailableForWrite(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
uint32_t available = uart_ll_get_txfifo_len(UART_LL_GET_HW(uart->num));
UART_MUTEX_UNLOCK();
return available;
}
2016-10-06 13:21:30 +02:00
uint8_t uartRead(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
uint8_t c = 0;
UART_MUTEX_LOCK();
if (uart->has_peek) {
uart->has_peek = false;
c = uart->peek_byte;
} else {
int len = uart_read_bytes(uart->num, &c, 1, 20 / portTICK_RATE_MS);
if (len == 0) {
c = 0;
}
2016-10-06 13:21:30 +02:00
}
UART_MUTEX_UNLOCK();
return c;
2016-10-06 13:21:30 +02:00
}
uint8_t uartPeek(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
uint8_t c = 0;
UART_MUTEX_LOCK();
if (uart->has_peek) {
c = uart->peek_byte;
} else {
int len = uart_read_bytes(uart->num, &c, 1, 20 / portTICK_RATE_MS);
if (len == 0) {
c = 0;
} else {
uart->has_peek = true;
uart->peek_byte = c;
}
2016-10-06 13:21:30 +02:00
}
UART_MUTEX_UNLOCK();
return c;
2016-10-06 13:21:30 +02:00
}
void uartWrite(uart_t* uart, uint8_t c)
{
if(uart == NULL) {
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart_write_bytes(uart->num, &c, 1);
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartWriteBuf(uart_t* uart, const uint8_t * data, size_t len)
{
if(uart == NULL) {
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart_write_bytes(uart->num, data, len);
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartFlush(uart_t* uart)
{
uartFlushTxOnly(uart, true);
}
void uartFlushTxOnly(uart_t* uart, bool txOnly)
2016-10-06 13:21:30 +02:00
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return;
}
UART_MUTEX_LOCK();
ESP_ERROR_CHECK(uart_wait_tx_done(uart->num, portMAX_DELAY));
2016-10-06 13:21:30 +02:00
if ( !txOnly ) {
ESP_ERROR_CHECK(uart_flush_input(uart->num));
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartSetBaudRate(uart_t* uart, uint32_t baud_rate)
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart_ll_set_baudrate(UART_LL_GET_HW(uart->num), baud_rate);
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
uint32_t uartGetBaudRate(uart_t* uart)
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return 0;
}
UART_MUTEX_LOCK();
uint32_t baud_rate = uart_ll_get_baudrate(UART_LL_GET_HW(uart->num));
UART_MUTEX_UNLOCK();
return baud_rate;
2016-10-06 13:21:30 +02:00
}
static void ARDUINO_ISR_ATTR uart0_write_char(char c)
2016-10-06 13:21:30 +02:00
{
while (uart_ll_get_txfifo_len(&UART0) == 0);
uart_ll_write_txfifo(&UART0, (const uint8_t *) &c, 1);
2016-10-06 13:21:30 +02:00
}
#if SOC_UART_NUM > 1
static void ARDUINO_ISR_ATTR uart1_write_char(char c)
2016-10-06 13:21:30 +02:00
{
while (uart_ll_get_txfifo_len(&UART1) == 0);
uart_ll_write_txfifo(&UART1, (const uint8_t *) &c, 1);
2016-10-06 13:21:30 +02:00
}
#endif
2016-10-06 13:21:30 +02:00
#if SOC_UART_NUM > 2
static void ARDUINO_ISR_ATTR uart2_write_char(char c)
2016-10-06 13:21:30 +02:00
{
while (uart_ll_get_txfifo_len(&UART2) == 0);
uart_ll_write_txfifo(&UART2, (const uint8_t *) &c, 1);
2016-10-06 13:21:30 +02:00
}
#endif
2016-10-06 13:21:30 +02:00
void uart_install_putc()
2016-10-06 13:21:30 +02:00
{
switch(s_uart_debug_nr) {
case 0:
ets_install_putc1((void (*)(char)) &uart0_write_char);
break;
#if SOC_UART_NUM > 1
2016-10-06 13:21:30 +02:00
case 1:
ets_install_putc1((void (*)(char)) &uart1_write_char);
break;
#endif
#if SOC_UART_NUM > 2
2016-10-06 13:21:30 +02:00
case 2:
ets_install_putc1((void (*)(char)) &uart2_write_char);
break;
#endif
2016-10-06 13:21:30 +02:00
default:
ets_install_putc1(NULL);
break;
}
}
void uartSetDebug(uart_t* uart)
{
if(uart == NULL || uart->num >= SOC_UART_NUM) {
s_uart_debug_nr = -1;
//ets_install_putc1(NULL);
//return;
} else
if(s_uart_debug_nr == uart->num) {
return;
} else
s_uart_debug_nr = uart->num;
uart_install_putc();
}
2016-10-06 13:21:30 +02:00
int uartGetDebug()
{
return s_uart_debug_nr;
}
int log_printf(const char *format, ...)
{
static char loc_buf[64];
char * temp = loc_buf;
int len;
va_list arg;
va_list copy;
va_start(arg, format);
va_copy(copy, arg);
len = vsnprintf(NULL, 0, format, arg);
va_end(copy);
if(len >= sizeof(loc_buf)){
temp = (char*)malloc(len+1);
if(temp == NULL) {
return 0;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
if(s_uart_debug_nr != -1 && _uart_bus_array[s_uart_debug_nr].lock){
2019-01-09 21:37:31 +01:00
xSemaphoreTake(_uart_bus_array[s_uart_debug_nr].lock, portMAX_DELAY);
}
#endif
vsnprintf(temp, len+1, format, arg);
ets_printf("%s", temp);
#if !CONFIG_DISABLE_HAL_LOCKS
if(s_uart_debug_nr != -1 && _uart_bus_array[s_uart_debug_nr].lock){
xSemaphoreGive(_uart_bus_array[s_uart_debug_nr].lock);
}
#endif
va_end(arg);
2019-01-09 21:37:31 +01:00
if(len >= sizeof(loc_buf)){
free(temp);
}
return len;
}
static void log_print_buf_line(const uint8_t *b, size_t len, size_t total_len){
for(size_t i = 0; i<len; i++){
log_printf("%s0x%02x,",i?" ":"", b[i]);
}
if(total_len > 16){
for(size_t i = len; i<16; i++){
log_printf(" ");
}
log_printf(" // ");
} else {
log_printf(" // ");
}
for(size_t i = 0; i<len; i++){
log_printf("%c",((b[i] >= 0x20) && (b[i] < 0x80))?b[i]:'.');
}
log_printf("\n");
}
void log_print_buf(const uint8_t *b, size_t len){
if(!len || !b){
return;
}
for(size_t i = 0; i<len; i+=16){
if(len > 16){
log_printf("/* 0x%04X */ ", i);
}
log_print_buf_line(b+i, ((len-i)<16)?(len - i):16, len);
}
}
/*
* if enough pulses are detected return the minimum high pulse duration + minimum low pulse duration divided by two.
* This equals one bit period. If flag is true the function return inmediately, otherwise it waits for enough pulses.
*/
unsigned long uartBaudrateDetect(uart_t *uart, bool flg)
{
if(uart == NULL) {
return 0;
}
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
while(hw->rxd_cnt.edge_cnt < 30) { // UART_PULSE_NUM(uart_num)
if(flg) return 0;
ets_delay_us(1000);
}
UART_MUTEX_LOCK();
//log_i("lowpulse_min_cnt = %d hightpulse_min_cnt = %d", hw->lowpulse.min_cnt, hw->highpulse.min_cnt);
unsigned long ret = ((hw->lowpulse.min_cnt + hw->highpulse.min_cnt) >> 1);
UART_MUTEX_UNLOCK();
return ret;
}
/*
* To start detection of baud rate with the uart the auto_baud.en bit needs to be cleared and set. The bit period is
* detected calling uartBadrateDetect(). The raw baudrate is computed using the UART_CLK_FREQ. The raw baudrate is
* rounded to the closed real baudrate.
*
* ESP32-C3 reports wrong baud rate detection as shown below:
*
* This will help in a future recall for the C3.
* Baud Sent: Baud Read:
* 300 --> 19536
* 2400 --> 19536
* 4800 --> 19536
* 9600 --> 28818
* 19200 --> 57678
* 38400 --> 115440
* 57600 --> 173535
* 115200 --> 347826
* 230400 --> 701754
*
*
*/
void uartStartDetectBaudrate(uart_t *uart) {
if(uart == NULL) {
return;
}
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
#ifdef CONFIG_IDF_TARGET_ESP32C3
// ESP32-C3 requires further testing
// Baud rate detection returns wrong values
log_e("ESP32-C3 baud rate detection is not supported.");
return;
// Code bellow for C3 kept for future recall
//hw->rx_filt.glitch_filt = 0x08;
//hw->rx_filt.glitch_filt_en = 1;
//hw->conf0.autobaud_en = 0;
//hw->conf0.autobaud_en = 1;
#else
hw->auto_baud.glitch_filt = 0x08;
hw->auto_baud.en = 0;
hw->auto_baud.en = 1;
2021-04-14 17:10:05 +02:00
#endif
}
unsigned long
uartDetectBaudrate(uart_t *uart)
{
if(uart == NULL) {
return 0;
}
#ifndef CONFIG_IDF_TARGET_ESP32C3 // ESP32-C3 requires further testing - Baud rate detection returns wrong values
static bool uartStateDetectingBaudrate = false;
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
if(!uartStateDetectingBaudrate) {
uartStartDetectBaudrate(uart);
uartStateDetectingBaudrate = true;
}
unsigned long divisor = uartBaudrateDetect(uart, true);
if (!divisor) {
return 0;
}
// log_i(...) below has been used to check C3 baud rate detection results
//log_i("Divisor = %d\n", divisor);
//log_i("BAUD RATE based on Positive Pulse %d\n", getApbFrequency()/((hw->pospulse.min_cnt + 1)/2));
//log_i("BAUD RATE based on Negative Pulse %d\n", getApbFrequency()/((hw->negpulse.min_cnt + 1)/2));
#ifdef CONFIG_IDF_TARGET_ESP32C3
//hw->conf0.autobaud_en = 0;
#else
hw->auto_baud.en = 0;
#endif
uartStateDetectingBaudrate = false; // Initialize for the next round
unsigned long baudrate = getApbFrequency() / divisor;
//log_i("APB_FREQ = %d\nraw baudrate detected = %d", getApbFrequency(), baudrate);
static const unsigned long default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400};
size_t i;
for (i = 1; i < sizeof(default_rates) / sizeof(default_rates[0]) - 1; i++) // find the nearest real baudrate
{
if (baudrate <= default_rates[i])
{
if (baudrate - default_rates[i - 1] < default_rates[i] - baudrate) {
i--;
}
break;
}
}
return default_rates[i];
2021-04-14 17:10:05 +02:00
#else
log_e("ESP32-C3 baud rate detection is not supported.");
return 0;
#endif
}