arduino-esp32/cores/esp32/esp32-hal-rmt.c

855 lines
25 KiB
C
Raw Normal View History

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "freertos/FreeRTOS.h"
#include "freertos/event_groups.h"
#include "freertos/semphr.h"
#include "esp32-hal.h"
#include "esp8266-compat.h"
#include "soc/gpio_reg.h"
#include "soc/gpio_reg.h"
#include "esp32-hal-rmt.h"
#include "driver/periph_ctrl.h"
#include "soc/rmt_struct.h"
#include "esp_intr_alloc.h"
/**
* Internal macros
*/
#define MAX_CHANNELS 8
#define MAX_DATA_PER_CHANNEL 64
#define MAX_DATA_PER_ITTERATION 62
#define _ABS(a) (a>0?a:-a)
#define _LIMIT(a,b) (a>b?b:a)
#define __INT_TX_END (1)
#define __INT_RX_END (2)
#define __INT_ERROR (4)
#define __INT_THR_EVNT (1<<24)
#define _INT_TX_END(channel) (__INT_TX_END<<(channel*3))
#define _INT_RX_END(channel) (__INT_RX_END<<(channel*3))
#define _INT_ERROR(channel) (__INT_ERROR<<(channel*3))
#define _INT_THR_EVNT(channel) ((__INT_THR_EVNT)<<(channel))
#if CONFIG_DISABLE_HAL_LOCKS
# define RMT_MUTEX_LOCK(channel)
# define RMT_MUTEX_UNLOCK(channel)
#else
# define RMT_MUTEX_LOCK(channel) do {} while (xSemaphoreTake(g_rmt_objlocks[channel], portMAX_DELAY) != pdPASS)
# define RMT_MUTEX_UNLOCK(channel) xSemaphoreGive(g_rmt_objlocks[channel])
#endif /* CONFIG_DISABLE_HAL_LOCKS */
#define _RMT_INTERNAL_DEBUG
#ifdef _RMT_INTERNAL_DEBUG
# define DEBUG_INTERRUPT_START(pin) digitalWrite(pin, 1);
# define DEBUG_INTERRUPT_END(pin) digitalWrite(pin, 0);
#else
# define DEBUG_INTERRUPT_START(pin)
# define DEBUG_INTERRUPT_END(pin)
#endif /* _RMT_INTERNAL_DEBUG */
/**
* Typedefs for internal stuctures, enums
*/
typedef enum {
E_NO_INTR = 0,
E_TX_INTR = 1,
E_TXTHR_INTR = 2,
E_RX_INTR = 4,
} intr_mode_t;
typedef enum {
E_INACTIVE = 0,
E_FIRST_HALF = 1,
E_LAST_DATA = 2,
E_END_TRANS = 4,
E_SET_CONTI = 8,
} transaction_state_t;
struct rmt_obj_s
{
bool allocated;
EventGroupHandle_t events;
int pin;
int channel;
bool tx_not_rx;
int buffers;
int data_size;
uint32_t* data_ptr;
intr_mode_t intr_mode;
transaction_state_t tx_state;
rmt_rx_data_cb_t cb;
bool data_alloc;
void * arg;
};
/**
* Internal variables for channel descriptors
*/
static xSemaphoreHandle g_rmt_objlocks[MAX_CHANNELS] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static rmt_obj_t g_rmt_objects[MAX_CHANNELS] = {
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
{ false, NULL, 0, 0, 0, 0, 0, NULL, E_NO_INTR, E_INACTIVE, NULL, false, NULL},
};
/**
* Internal variables for driver data
*/
static intr_handle_t intr_handle;
static bool periph_enabled = false;
static xSemaphoreHandle g_rmt_block_lock = NULL;
/**
* Internal method (private) declarations
*/
static void _initPin(int pin, int channel, bool tx_not_rx);
static bool _rmtSendOnce(rmt_obj_t* rmt, rmt_data_t* data, size_t size, bool continuous);
static void IRAM_ATTR _rmt_isr(void* arg);
static rmt_obj_t* _rmtAllocate(int pin, int from, int size);
static void _initPin(int pin, int channel, bool tx_not_rx);
static int IRAM_ATTR _rmt_get_mem_len(uint8_t channel);
static void IRAM_ATTR _rmt_tx_mem_first(uint8_t ch);
static void IRAM_ATTR _rmt_tx_mem_second(uint8_t ch);
/**
* Public method definitions
*/
bool rmtSetCarrier(rmt_obj_t* rmt, bool carrier_en, bool carrier_level, uint32_t low, uint32_t high)
{
if (!rmt || low > 0xFFFF || high > 0xFFFF) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
RMT.carrier_duty_ch[channel].low = low;
RMT.carrier_duty_ch[channel].high = high;
RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtSetFilter(rmt_obj_t* rmt, bool filter_en, uint32_t filter_level)
{
if (!rmt || filter_level > 0xFF) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
RMT.conf_ch[channel].conf1.rx_filter_thres = filter_level;
RMT.conf_ch[channel].conf1.rx_filter_en = filter_en;
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtSetRxThreshold(rmt_obj_t* rmt, uint32_t value)
{
if (!rmt || value > 0xFFFF) {
return false;
}
size_t channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
RMT.conf_ch[channel].conf0.idle_thres = value;
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtDeinit(rmt_obj_t *rmt)
{
if (!rmt) {
return false;
}
// sanity check
if (rmt != &(g_rmt_objects[rmt->channel])) {
return false;
}
size_t from = rmt->channel;
size_t to = rmt->buffers + rmt->channel;
size_t i;
#if !CONFIG_DISABLE_HAL_LOCKS
if(g_rmt_objlocks[from] != NULL) {
vSemaphoreDelete(g_rmt_objlocks[from]);
}
#endif
if (g_rmt_objects[from].data_alloc) {
free(g_rmt_objects[from].data_ptr);
}
for (i = from; i < to; i++) {
g_rmt_objects[i].allocated = false;
}
g_rmt_objects[from].channel = 0;
g_rmt_objects[from].buffers = 0;
return true;
}
bool rmtLoop(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
{
if (!rmt) {
return false;
}
int allocated_size = MAX_DATA_PER_CHANNEL * rmt->buffers;
if (size > allocated_size) {
return false;
}
return _rmtSendOnce(rmt, data, size, true);
}
bool rmtWrite(rmt_obj_t* rmt, rmt_data_t* data, size_t size)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
int allocated_size = MAX_DATA_PER_CHANNEL * rmt->buffers;
if (size > allocated_size) {
int half_tx_nr = MAX_DATA_PER_ITTERATION/2;
RMT_MUTEX_LOCK(channel);
// setup interrupt handler if not yet installed for half and full tx
if (!intr_handle) {
esp_intr_alloc(ETS_RMT_INTR_SOURCE, (int)ESP_INTR_FLAG_IRAM, _rmt_isr, NULL, &intr_handle);
}
rmt->data_size = size - MAX_DATA_PER_ITTERATION;
rmt->data_ptr = ((uint32_t*)data) + MAX_DATA_PER_ITTERATION;
rmt->intr_mode = E_TX_INTR | E_TXTHR_INTR;
rmt->tx_state = E_SET_CONTI | E_FIRST_HALF;
// init the tx limit for interruption
RMT.tx_lim_ch[channel].limit = half_tx_nr+2;
// reset memory pointer
RMT.conf_ch[channel].conf1.apb_mem_rst = 1;
RMT.conf_ch[channel].conf1.apb_mem_rst = 0;
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 0;
// set the tx end mark
RMTMEM.chan[channel].data32[MAX_DATA_PER_ITTERATION].val = 0;
// clear and enable both Tx completed and half tx event
RMT.int_clr.val = _INT_TX_END(channel);
RMT.int_clr.val = _INT_THR_EVNT(channel);
RMT.int_clr.val = _INT_ERROR(channel);
RMT.int_ena.val |= _INT_TX_END(channel);
RMT.int_ena.val |= _INT_THR_EVNT(channel);
RMT.int_ena.val |= _INT_ERROR(channel);
RMT_MUTEX_UNLOCK(channel);
// start the transation
return _rmtSendOnce(rmt, data, MAX_DATA_PER_ITTERATION, false);
} else {
// use one-go mode if data fits one buffer
return _rmtSendOnce(rmt, data, size, false);
}
}
bool rmtReadData(rmt_obj_t* rmt, uint32_t* data, size_t size)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
if (g_rmt_objects[channel].buffers < size/MAX_DATA_PER_CHANNEL) {
return false;
}
size_t i;
volatile uint32_t* rmt_mem_ptr = &(RMTMEM.chan[channel].data32[0].val);
for (i=0; i<size; i++) {
data[i] = *rmt_mem_ptr++;
}
return true;
}
bool rmtBeginReceive(rmt_obj_t* rmt)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
RMT.int_clr.val = _INT_ERROR(channel);
RMT.int_ena.val |= _INT_ERROR(channel);
RMT.conf_ch[channel].conf1.mem_owner = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
RMT.conf_ch[channel].conf1.rx_en = 1;
return true;
}
bool rmtReceiveCompleted(rmt_obj_t* rmt)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
if (RMT.int_raw.val&_INT_RX_END(channel)) {
// RX end flag
RMT.int_clr.val = _INT_RX_END(channel);
return true;
} else {
return false;
}
}
bool rmtRead(rmt_obj_t* rmt, rmt_rx_data_cb_t cb, void * arg)
{
if (!rmt && !cb) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
rmt->arg = arg;
rmt->intr_mode = E_RX_INTR;
rmt->tx_state = E_FIRST_HALF;
rmt->cb = cb;
// allocate internally two buffers which would alternate
if (!rmt->data_alloc) {
rmt->data_ptr = (uint32_t*)malloc(2*MAX_DATA_PER_CHANNEL*(rmt->buffers)*sizeof(uint32_t));
rmt->data_size = MAX_DATA_PER_CHANNEL*rmt->buffers;
rmt->data_alloc = true;
}
RMT.conf_ch[channel].conf1.mem_owner = 1;
RMT.int_clr.val = _INT_RX_END(channel);
RMT.int_clr.val = _INT_ERROR(channel);
RMT.int_ena.val |= _INT_RX_END(channel);
RMT.int_ena.val |= _INT_ERROR(channel);
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
RMT.conf_ch[channel].conf1.rx_en = 1;
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtEnd(rmt_obj_t* rmt) {
if (!rmt) {
return false;
}
int channel = rmt->channel;
RMT_MUTEX_LOCK(channel);
RMT.conf_ch[channel].conf1.rx_en = 1;
RMT_MUTEX_UNLOCK(channel);
return true;
}
bool rmtReadAsync(rmt_obj_t* rmt, rmt_data_t* data, size_t size, void* eventFlag, bool waitForData, uint32_t timeout)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
if (g_rmt_objects[channel].buffers < size/MAX_DATA_PER_CHANNEL) {
return false;
}
if (eventFlag) {
xEventGroupClearBits(eventFlag, RMT_FLAGS_ALL);
rmt->events = eventFlag;
}
if (data && size>0) {
rmt->data_ptr = (uint32_t*)data;
rmt->data_size = size;
}
RMT_MUTEX_LOCK(channel);
rmt->intr_mode = E_RX_INTR;
RMT.conf_ch[channel].conf1.mem_owner = 1;
RMT.int_clr.val = _INT_RX_END(channel);
RMT.int_clr.val = _INT_ERROR(channel);
RMT.int_ena.val |= _INT_RX_END(channel);
RMT.int_ena.val |= _INT_ERROR(channel);
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
RMT.conf_ch[channel].conf1.rx_en = 1;
RMT_MUTEX_UNLOCK(channel);
// wait for data if requested so
if (waitForData && eventFlag) {
uint32_t flags = xEventGroupWaitBits(eventFlag, RMT_FLAGS_ALL,
pdTRUE /* clear on exit */, pdFALSE /* wait for all bits */, timeout);
if (flags & RMT_FLAG_ERROR) {
return false;
}
}
return true;
}
float rmtSetTick(rmt_obj_t* rmt, float tick)
{
if (!rmt) {
return false;
}
/*
divider field span from 1 (smallest), 2, 3, ... , 0xFF, 0x00 (highest)
* rmt tick from 1/80M -> 12.5ns (1x) div_cnt = 0x01
3.2 us (256x) div_cnt = 0x00
* rmt tick for 1 MHz -> 1us (1x) div_cnt = 0x01
256us (256x) div_cnt = 0x00
*/
int apb_div = _LIMIT(tick/12.5, 256);
int ref_div = _LIMIT(tick/1000, 256);
float apb_tick = 12.5 * apb_div;
float ref_tick = 1000.0 * ref_div;
size_t channel = rmt->channel;
if (_ABS(apb_tick - tick) < _ABS(ref_tick - tick)) {
RMT.conf_ch[channel].conf0.div_cnt = apb_div & 0xFF;
RMT.conf_ch[channel].conf1.ref_always_on = 1;
return apb_tick;
} else {
RMT.conf_ch[channel].conf0.div_cnt = ref_div & 0xFF;
RMT.conf_ch[channel].conf1.ref_always_on = 0;
return ref_tick;
}
}
rmt_obj_t* rmtInit(int pin, bool tx_not_rx, rmt_reserve_memsize_t memsize)
{
int buffers = memsize;
rmt_obj_t* rmt;
size_t i;
size_t j;
// create common block mutex for protecting allocs from multiple threads
if (!g_rmt_block_lock) {
g_rmt_block_lock = xSemaphoreCreateMutex();
}
// lock
while (xSemaphoreTake(g_rmt_block_lock, portMAX_DELAY) != pdPASS) {}
for (i=0; i<MAX_CHANNELS; i++) {
for (j=0; j<buffers && i+j < MAX_CHANNELS; j++) {
// if the space is ocupied break and continue on other channel
if (g_rmt_objects[i+j].allocated) {
i += j; // continue searching from latter channel
break;
}
}
if (j == buffers) {
// found a space in channel descriptors
break;
}
}
if (i == MAX_CHANNELS || i+j > MAX_CHANNELS || j != buffers) {
xSemaphoreGive(g_rmt_block_lock);
return NULL;
}
rmt = _rmtAllocate(pin, i, buffers);
xSemaphoreGive(g_rmt_block_lock);
size_t channel = i;
#if !CONFIG_DISABLE_HAL_LOCKS
if(g_rmt_objlocks[channel] == NULL) {
g_rmt_objlocks[channel] = xSemaphoreCreateMutex();
if(g_rmt_objlocks[channel] == NULL) {
return NULL;
}
}
#endif
RMT_MUTEX_LOCK(channel);
rmt->pin = pin;
rmt->tx_not_rx = tx_not_rx;
rmt->buffers =buffers;
rmt->channel = channel;
rmt->arg = NULL;
_initPin(pin, channel, tx_not_rx);
// Initialize the registers in default mode:
// - no carrier, filter
// - timebase tick of 1us
// - idle threshold set to 0x8000 (max pulse width + 1)
RMT.conf_ch[channel].conf0.div_cnt = 1;
RMT.conf_ch[channel].conf0.mem_size = buffers;
RMT.conf_ch[channel].conf0.carrier_en = 0;
RMT.conf_ch[channel].conf0.carrier_out_lv = 0;
RMT.conf_ch[channel].conf0.mem_pd = 0;
RMT.conf_ch[channel].conf0.idle_thres = 0x80;
RMT.conf_ch[channel].conf1.rx_en = 0;
RMT.conf_ch[channel].conf1.tx_conti_mode = 0;
RMT.conf_ch[channel].conf1.ref_cnt_rst = 0;
RMT.conf_ch[channel].conf1.rx_filter_en = 0;
RMT.conf_ch[channel].conf1.rx_filter_thres = 0;
RMT.conf_ch[channel].conf1.idle_out_lv = 0; // signal level for idle
RMT.conf_ch[channel].conf1.idle_out_en = 1; // enable idle
RMT.conf_ch[channel].conf1.ref_always_on = 0; // base clock
RMT.apb_conf.fifo_mask = 1;
if (tx_not_rx) {
// RMT.conf_ch[channel].conf1.rx_en = 0;
RMT.conf_ch[channel].conf1.mem_owner = 0;
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
} else {
// RMT.conf_ch[channel].conf1.rx_en = 1;
RMT.conf_ch[channel].conf1.mem_owner = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
}
// install interrupt if at least one channel is active
if (!intr_handle) {
esp_intr_alloc(ETS_RMT_INTR_SOURCE, (int)ESP_INTR_FLAG_IRAM, _rmt_isr, NULL, &intr_handle);
}
RMT_MUTEX_UNLOCK(channel);
return rmt;
}
/**
* Private methods definitions
*/
bool _rmtSendOnce(rmt_obj_t* rmt, rmt_data_t* data, size_t size, bool continuous)
{
if (!rmt) {
return false;
}
int channel = rmt->channel;
RMT.apb_conf.fifo_mask = 1;
if (data && size>0) {
size_t i;
volatile uint32_t* rmt_mem_ptr = &(RMTMEM.chan[channel].data32[0].val);
for (i = 0; i < size; i++) {
*rmt_mem_ptr++ = data[i].val;
}
// tx end mark
RMTMEM.chan[channel].data32[size].val = 0;
}
RMT_MUTEX_LOCK(channel);
RMT.conf_ch[channel].conf1.tx_conti_mode = continuous;
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
RMT.conf_ch[channel].conf1.tx_start = 1;
RMT_MUTEX_UNLOCK(channel);
return true;
}
static rmt_obj_t* _rmtAllocate(int pin, int from, int size)
{
size_t i;
// setup how many buffers shall we use
g_rmt_objects[from].buffers = size;
for (i=0; i<size; i++) {
// mark the block of channels as used
g_rmt_objects[i+from].allocated = true;
}
return &(g_rmt_objects[from]);
}
static void _initPin(int pin, int channel, bool tx_not_rx)
{
if (!periph_enabled) {
periph_enabled = true;
periph_module_enable( PERIPH_RMT_MODULE );
}
if (tx_not_rx) {
pinMode(pin, OUTPUT);
pinMatrixOutAttach(pin, RMT_SIG_OUT0_IDX + channel, 0, 0);
} else {
pinMode(pin, INPUT);
pinMatrixInAttach(pin, RMT_SIG_IN0_IDX + channel, 0);
}
}
static void IRAM_ATTR _rmt_isr(void* arg)
{
int intr_val = RMT.int_st.val;
size_t ch;
for (ch = 0; ch < MAX_CHANNELS; ch++) {
if (intr_val & _INT_RX_END(ch)) {
// clear the flag
RMT.int_clr.val = _INT_RX_END(ch);
RMT.int_ena.val &= ~_INT_RX_END(ch);
if ((g_rmt_objects[ch].intr_mode) & E_RX_INTR) {
if (g_rmt_objects[ch].events) {
xEventGroupSetBits(g_rmt_objects[ch].events, RMT_FLAG_RX_DONE);
}
if (g_rmt_objects[ch].data_ptr && g_rmt_objects[ch].data_size > 0) {
size_t i;
uint32_t * data = g_rmt_objects[ch].data_ptr;
// in case of callback, provide switching between memories
if (g_rmt_objects[ch].cb) {
if (g_rmt_objects[ch].tx_state & E_FIRST_HALF) {
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
} else {
g_rmt_objects[ch].tx_state |= E_FIRST_HALF;
data += MAX_DATA_PER_CHANNEL*(g_rmt_objects[ch].buffers);
}
}
uint32_t *data_received = data;
for (i = 0; i < g_rmt_objects[ch].data_size; i++ ) {
*data++ = RMTMEM.chan[ch].data32[i].val;
}
if (g_rmt_objects[ch].cb) {
// actually received data ptr
(g_rmt_objects[ch].cb)(data_received, _rmt_get_mem_len(ch), g_rmt_objects[ch].arg);
// restart the reception
RMT.conf_ch[ch].conf1.mem_owner = 1;
RMT.conf_ch[ch].conf1.mem_wr_rst = 1;
RMT.conf_ch[ch].conf1.rx_en = 1;
RMT.int_ena.val |= _INT_RX_END(ch);
} else {
// if not callback provide, expect only one Rx
g_rmt_objects[ch].intr_mode &= ~E_RX_INTR;
}
}
} else {
// Report error and disable Rx interrupt
log_e("Unexpected Rx interrupt!\n"); // TODO: eplace messages with log_X
RMT.int_ena.val &= ~_INT_RX_END(ch);
}
}
if (intr_val & _INT_ERROR(ch)) {
// clear the flag
RMT.int_clr.val = _INT_ERROR(ch);
RMT.int_ena.val &= ~_INT_ERROR(ch);
// report error
log_e("RMT Error %d!\n", ch);
if (g_rmt_objects[ch].events) {
xEventGroupSetBits(g_rmt_objects[ch].events, RMT_FLAG_ERROR);
}
// reset memory
RMT.conf_ch[ch].conf1.mem_rd_rst = 1;
RMT.conf_ch[ch].conf1.mem_rd_rst = 0;
RMT.conf_ch[ch].conf1.mem_wr_rst = 1;
RMT.conf_ch[ch].conf1.mem_wr_rst = 0;
}
if (intr_val & _INT_TX_END(ch)) {
RMT.int_clr.val = _INT_TX_END(ch);
_rmt_tx_mem_second(ch);
}
if (intr_val & _INT_THR_EVNT(ch)) {
// clear the flag
RMT.int_clr.val = _INT_THR_EVNT(ch);
// initial setup of continuous mode
if (g_rmt_objects[ch].tx_state & E_SET_CONTI) {
RMT.conf_ch[ch].conf1.tx_conti_mode = 1;
g_rmt_objects[ch].intr_mode &= ~E_SET_CONTI;
}
_rmt_tx_mem_first(ch);
}
}
}
static void IRAM_ATTR _rmt_tx_mem_second(uint8_t ch)
{
DEBUG_INTERRUPT_START(4)
uint32_t* data = g_rmt_objects[ch].data_ptr;
int half_tx_nr = MAX_DATA_PER_ITTERATION/2;
int i;
RMT.tx_lim_ch[ch].limit = half_tx_nr+2;
RMT.int_clr.val = _INT_THR_EVNT(ch);
RMT.int_ena.val |= _INT_THR_EVNT(ch);
g_rmt_objects[ch].tx_state |= E_FIRST_HALF;
if (data) {
int remaining_size = g_rmt_objects[ch].data_size;
// will the remaining data occupy the entire halfbuffer
if (remaining_size > half_tx_nr) {
for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = data[i];
}
g_rmt_objects[ch].data_size -= half_tx_nr;
g_rmt_objects[ch].data_ptr += half_tx_nr;
} else {
for (i = 0; i < half_tx_nr; i++) {
if (i < remaining_size) {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = data[i];
} else {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0x000F000F;
}
}
g_rmt_objects[ch].data_ptr = NULL;
}
} else if ((!(g_rmt_objects[ch].tx_state & E_LAST_DATA)) &&
(!(g_rmt_objects[ch].tx_state & E_END_TRANS))) {
for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0x000F000F;
}
RMTMEM.chan[ch].data32[half_tx_nr+i].val = 0;
g_rmt_objects[ch].tx_state |= E_LAST_DATA;
RMT.conf_ch[ch].conf1.tx_conti_mode = 0;
} else {
log_d("RMT Tx finished %d!\n", ch);
RMT.conf_ch[ch].conf1.tx_conti_mode = 0;
RMT.int_ena.val &= ~_INT_TX_END(ch);
RMT.int_ena.val &= ~_INT_THR_EVNT(ch);
g_rmt_objects[ch].intr_mode = E_NO_INTR;
g_rmt_objects[ch].tx_state = E_INACTIVE;
}
DEBUG_INTERRUPT_END(4);
}
static void IRAM_ATTR _rmt_tx_mem_first(uint8_t ch)
{
DEBUG_INTERRUPT_START(2);
uint32_t* data = g_rmt_objects[ch].data_ptr;
int half_tx_nr = MAX_DATA_PER_ITTERATION/2;
int i;
RMT.int_ena.val &= ~_INT_THR_EVNT(ch);
RMT.tx_lim_ch[ch].limit = 0;
if (data) {
int remaining_size = g_rmt_objects[ch].data_size;
// will the remaining data occupy the entire halfbuffer
if (remaining_size > half_tx_nr) {
RMTMEM.chan[ch].data32[0].val = data[0] - 1;
for (i = 1; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[i].val = data[i];
}
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
// turn off the treshold interrupt
RMT.int_ena.val &= ~_INT_THR_EVNT(ch);
RMT.tx_lim_ch[ch].limit = 0;
g_rmt_objects[ch].data_size -= half_tx_nr;
g_rmt_objects[ch].data_ptr += half_tx_nr;
} else {
RMTMEM.chan[ch].data32[0].val = data[0] - 1;
for (i = 1; i < half_tx_nr; i++) {
if (i < remaining_size) {
RMTMEM.chan[ch].data32[i].val = data[i];
} else {
RMTMEM.chan[ch].data32[i].val = 0x000F000F;
}
}
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
g_rmt_objects[ch].data_ptr = NULL;
}
} else {
for (i = 0; i < half_tx_nr; i++) {
RMTMEM.chan[ch].data32[i].val = 0x000F000F;
}
RMTMEM.chan[ch].data32[i].val = 0;
g_rmt_objects[ch].tx_state &= ~E_FIRST_HALF;
RMT.tx_lim_ch[ch].limit = 0;
g_rmt_objects[ch].tx_state |= E_LAST_DATA;
RMT.conf_ch[ch].conf1.tx_conti_mode = 0;
}
DEBUG_INTERRUPT_END(2);
}
static int IRAM_ATTR _rmt_get_mem_len(uint8_t channel)
{
int block_num = RMT.conf_ch[channel].conf0.mem_size;
int item_block_len = block_num * 64;
volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
int idx;
for(idx = 0; idx < item_block_len; idx++) {
if(data[idx].duration0 == 0) {
return idx;
} else if(data[idx].duration1 == 0) {
return idx + 1;
}
}
return idx;
}