arduino-esp32/cores/esp32/esp32-hal-uart.c

424 lines
10 KiB
C
Raw Normal View History

2016-10-06 13:21:30 +02:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-uart.h"
#include "esp32-hal.h"
2016-10-06 13:21:30 +02:00
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
2016-10-06 13:21:30 +02:00
#include "freertos/semphr.h"
#include "rom/ets_sys.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "rom/uart.h"
#include "soc/uart_reg.h"
#include "soc/uart_struct.h"
2016-10-06 13:21:30 +02:00
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#define ETS_UART_INUM 5
#define ETS_UART2_INUM ETS_UART_INUM
2016-10-06 13:21:30 +02:00
#define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:( (u==2)?DR_REG_UART2_BASE:0)))
#define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:( (u==2)?U2RXD_IN_IDX:0)))
#define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:( (u==2)?U2TXD_OUT_IDX:0)))
#define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:((u==2)?ETS_UART2_INTR_SOURCE:0)))
static int s_uart_debug_nr = 0;
struct uart_struct_t {
uart_dev_t * dev;
#if !CONFIG_DISABLE_HAL_LOCKS
2016-10-14 02:07:21 +02:00
xSemaphoreHandle lock;
#endif
uint8_t num;
xQueueHandle queue;
};
#if CONFIG_DISABLE_HAL_LOCKS
#define UART_MUTEX_LOCK()
#define UART_MUTEX_UNLOCK()
static uart_t _uart_bus_array[3] = {
{(volatile uart_dev_t *)(DR_REG_UART_BASE), 0, NULL},
{(volatile uart_dev_t *)(DR_REG_UART1_BASE), 1, NULL},
{(volatile uart_dev_t *)(DR_REG_UART2_BASE), 2, NULL}
};
#else
#define UART_MUTEX_LOCK() do {} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS)
#define UART_MUTEX_UNLOCK() xSemaphoreGive(uart->lock)
2016-10-14 02:07:21 +02:00
static uart_t _uart_bus_array[3] = {
2016-10-14 02:07:21 +02:00
{(volatile uart_dev_t *)(DR_REG_UART_BASE), NULL, 0, NULL},
{(volatile uart_dev_t *)(DR_REG_UART1_BASE), NULL, 1, NULL},
{(volatile uart_dev_t *)(DR_REG_UART2_BASE), NULL, 2, NULL}
};
#endif
2016-10-06 13:21:30 +02:00
static void IRAM_ATTR _uart_isr(void *arg)
{
uint8_t i, c;
2016-10-06 13:21:30 +02:00
BaseType_t xHigherPriorityTaskWoken;
uart_t* uart;
for(i=0;i<3;i++){
uart = &_uart_bus_array[i];
uart->dev->int_clr.rxfifo_full = 1;
uart->dev->int_clr.frm_err = 1;
uart->dev->int_clr.rxfifo_tout = 1;
while(uart->dev->status.rxfifo_cnt) {
c = uart->dev->fifo.rw_byte;
if(uart->queue != NULL && !xQueueIsQueueFullFromISR(uart->queue)) {
xQueueSendFromISR(uart->queue, &c, &xHigherPriorityTaskWoken);
}
2016-10-06 13:21:30 +02:00
}
}
if (xHigherPriorityTaskWoken) {
portYIELD_FROM_ISR();
}
}
void uartEnableGlobalInterrupt()
2016-10-06 13:21:30 +02:00
{
xt_set_interrupt_handler(ETS_UART_INUM, _uart_isr, NULL);
ESP_INTR_ENABLE(ETS_UART_INUM);
}
2016-10-06 13:21:30 +02:00
void uartDisableGlobalInterrupt()
{
ESP_INTR_DISABLE(ETS_UART_INUM);
xt_set_interrupt_handler(ETS_UART_INUM, NULL, NULL);
}
void uartEnableInterrupt(uart_t* uart)
{
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart->dev->conf1.rxfifo_full_thrhd = 112;
uart->dev->conf1.rx_tout_thrhd = 2;
uart->dev->conf1.rx_tout_en = 1;
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
intr_matrix_set(xPortGetCoreID(), UART_INTR_SOURCE(uart->num), ETS_UART_INUM);
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
}
void uartDisableInterrupt(uart_t* uart)
{
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
uart->dev->conf1.val = 0;
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
}
void uartDetachRx(uart_t* uart)
{
if(uart == NULL) {
return;
2016-10-06 13:21:30 +02:00
}
pinMatrixInDetach(UART_RXD_IDX(uart->num), false, false);
uartDisableInterrupt(uart);
}
2016-10-06 13:21:30 +02:00
void uartDetachTx(uart_t* uart)
{
if(uart == NULL) {
return;
2016-10-06 13:21:30 +02:00
}
pinMatrixOutDetach(UART_TXD_IDX(uart->num), false, false);
}
2016-10-06 13:21:30 +02:00
void uartAttachRx(uart_t* uart, uint8_t rxPin, bool inverted)
{
if(uart == NULL || rxPin > 39) {
return;
2016-10-06 13:21:30 +02:00
}
pinMode(rxPin, INPUT);
pinMatrixInAttach(rxPin, UART_RXD_IDX(uart->num), inverted);
uartEnableInterrupt(uart);
uartEnableGlobalInterrupt();
}
2016-10-06 13:21:30 +02:00
void uartAttachTx(uart_t* uart, uint8_t txPin, bool inverted)
{
if(uart == NULL || txPin > 39) {
return;
}
pinMode(txPin, OUTPUT);
pinMatrixOutAttach(txPin, UART_TXD_IDX(uart->num), inverted, false);
}
2016-10-06 13:21:30 +02:00
uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted)
{
if(uart_nr > 2) {
return NULL;
}
2016-10-06 13:21:30 +02:00
if(rxPin == -1 && txPin == -1) {
return NULL;
}
2016-10-06 13:21:30 +02:00
uart_t* uart = &_uart_bus_array[uart_nr];
2016-10-14 02:07:21 +02:00
#if !CONFIG_DISABLE_HAL_LOCKS
2016-10-14 02:07:21 +02:00
if(uart->lock == NULL) {
uart->lock = xSemaphoreCreateMutex();
if(uart->lock == NULL) {
return NULL;
}
}
#endif
2016-10-14 02:07:21 +02:00
if(queueLen && uart->queue == NULL) {
2016-10-06 13:21:30 +02:00
uart->queue = xQueueCreate(queueLen, sizeof(uint8_t)); //initialize the queue
if(uart->queue == NULL) {
return NULL;
}
}
uartFlush(uart);
2016-10-06 13:21:30 +02:00
uartSetBaudRate(uart, baudrate);
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
2016-10-06 13:21:30 +02:00
uart->dev->conf0.val = config;
#define TWO_STOP_BITS_CONF 0x3
#define ONE_STOP_BITS_CONF 0x1
if ( uart->dev->conf0.stop_bit_num == TWO_STOP_BITS_CONF) {
uart->dev->conf0.stop_bit_num = ONE_STOP_BITS_CONF;
uart->dev->rs485_conf.dl1_en = 1;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
if(rxPin != -1) {
uartAttachRx(uart, rxPin, inverted);
}
if(txPin != -1) {
uartAttachTx(uart, txPin, inverted);
}
2016-10-06 13:21:30 +02:00
return uart;
}
void uartEnd(uart_t* uart)
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
if(uart->queue != NULL) {
uint8_t c;
while(xQueueReceive(uart->queue, &c, 0));
2016-10-06 13:21:30 +02:00
vQueueDelete(uart->queue);
uart->queue = NULL;
2016-10-06 13:21:30 +02:00
}
uart->dev->conf0.val = 0;
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
uartDetachRx(uart);
uartDetachTx(uart);
2016-10-06 13:21:30 +02:00
}
uint32_t uartAvailable(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
2016-10-06 13:21:30 +02:00
return uxQueueMessagesWaiting(uart->queue);
}
uint8_t uartRead(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
2016-10-06 13:21:30 +02:00
uint8_t c;
if(xQueueReceive(uart->queue, &c, 0)) {
return c;
}
return 0;
}
uint8_t uartPeek(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
2016-10-06 13:21:30 +02:00
uint8_t c;
if(xQueuePeek(uart->queue, &c, 0)) {
return c;
}
return 0;
}
void uartWrite(uart_t* uart, uint8_t c)
{
if(uart == NULL) {
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
2016-10-29 13:34:18 +02:00
while(uart->dev->status.txfifo_cnt == 0x7F);
2016-10-06 13:21:30 +02:00
uart->dev->fifo.rw_byte = c;
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartWriteBuf(uart_t* uart, const uint8_t * data, size_t len)
{
if(uart == NULL) {
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
2016-10-06 15:31:28 +02:00
while(len) {
2016-10-29 13:34:18 +02:00
while(len && uart->dev->status.txfifo_cnt < 0x7F) {
2016-10-06 15:31:28 +02:00
uart->dev->fifo.rw_byte = *data++;
len--;
}
2016-10-06 13:21:30 +02:00
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartFlush(uart_t* uart)
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
while(uart->dev->status.txfifo_cnt);
2016-10-06 13:21:30 +02:00
uart->dev->conf0.txfifo_rst = 1;
uart->dev->conf0.txfifo_rst = 0;
2016-10-06 13:21:30 +02:00
uart->dev->conf0.rxfifo_rst = 1;
uart->dev->conf0.rxfifo_rst = 0;
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
void uartSetBaudRate(uart_t* uart, uint32_t baud_rate)
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return;
}
2016-10-14 02:07:21 +02:00
UART_MUTEX_LOCK();
2016-10-06 13:21:30 +02:00
uint32_t clk_div = ((UART_CLK_FREQ<<4)/baud_rate);
uart->dev->clk_div.div_int = clk_div>>4 ;
uart->dev->clk_div.div_frag = clk_div & 0xf;
2016-10-14 02:07:21 +02:00
UART_MUTEX_UNLOCK();
2016-10-06 13:21:30 +02:00
}
uint32_t uartGetBaudRate(uart_t* uart)
{
if(uart == NULL) {
2016-10-06 13:21:30 +02:00
return 0;
}
uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F);
return ((UART_CLK_FREQ<<4)/clk_div);
2016-10-06 13:21:30 +02:00
}
static void IRAM_ATTR uart0_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART_BASE) = c;
}
static void IRAM_ATTR uart1_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART1_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART1_BASE) = c;
}
static void IRAM_ATTR uart2_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART2_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART2_BASE) = c;
}
void uartSetDebug(uart_t* uart)
{
if(uart == NULL || uart->num > 2) {
s_uart_debug_nr = -1;
ets_install_putc1(NULL);
return;
}
if(s_uart_debug_nr == uart->num) {
return;
}
s_uart_debug_nr = uart->num;
switch(s_uart_debug_nr) {
case 0:
ets_install_putc1((void (*)(char)) &uart0_write_char);
break;
case 1:
ets_install_putc1((void (*)(char)) &uart1_write_char);
break;
case 2:
ets_install_putc1((void (*)(char)) &uart2_write_char);
break;
default:
ets_install_putc1(NULL);
break;
}
}
int uartGetDebug()
{
return s_uart_debug_nr;
}
int log_printf(const char *format, ...)
{
if(s_uart_debug_nr < 0){
return 0;
}
static char loc_buf[64];
char * temp = loc_buf;
int len;
va_list arg;
va_list copy;
va_start(arg, format);
va_copy(copy, arg);
len = vsnprintf(NULL, 0, format, arg);
va_end(copy);
if(len >= sizeof(loc_buf)){
temp = (char*)malloc(len+1);
if(temp == NULL) {
return 0;
}
}
vsnprintf(temp, len+1, format, arg);
#if !CONFIG_DISABLE_HAL_LOCKS
if(_uart_bus_array[s_uart_debug_nr].lock){
while (xSemaphoreTake(_uart_bus_array[s_uart_debug_nr].lock, portMAX_DELAY) != pdPASS);
ets_printf("%s", temp);
xSemaphoreGive(_uart_bus_array[s_uart_debug_nr].lock);
} else {
ets_printf("%s", temp);
}
#else
ets_printf("%s", temp);
#endif
va_end(arg);
if(len > 64){
free(temp);
}
return len;
}