arduino-esp32/libraries/ArduinoOTA/src/ArduinoOTA.cpp

398 lines
9.8 KiB
C++
Raw Normal View History

#ifndef LWIP_OPEN_SRC
#define LWIP_OPEN_SRC
#endif
#include <functional>
#include <WiFiUdp.h>
#include "ArduinoOTA.h"
#include "ESPmDNS.h"
#include "MD5Builder.h"
#include "Update.h"
// #define OTA_DEBUG Serial
ArduinoOTAClass::ArduinoOTAClass()
: _port(0)
, _initialized(false)
, _rebootOnSuccess(true)
, _mdnsEnabled(true)
, _state(OTA_IDLE)
, _size(0)
, _cmd(0)
, _ota_port(0)
, _ota_timeout(1000)
, _start_callback(NULL)
, _end_callback(NULL)
, _error_callback(NULL)
, _progress_callback(NULL)
{
}
ArduinoOTAClass::~ArduinoOTAClass(){
_udp_ota.stop();
}
ArduinoOTAClass& ArduinoOTAClass::onStart(THandlerFunction fn) {
_start_callback = fn;
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::onEnd(THandlerFunction fn) {
_end_callback = fn;
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::onProgress(THandlerFunction_Progress fn) {
_progress_callback = fn;
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::onError(THandlerFunction_Error fn) {
_error_callback = fn;
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::setPort(uint16_t port) {
if (!_initialized && !_port && port) {
_port = port;
}
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::setHostname(const char * hostname) {
if (!_initialized && !_hostname.length() && hostname) {
_hostname = hostname;
}
return *this;
}
String ArduinoOTAClass::getHostname() {
return _hostname;
}
ArduinoOTAClass& ArduinoOTAClass::setPassword(const char * password) {
if (!_initialized && !_password.length() && password) {
MD5Builder passmd5;
passmd5.begin();
passmd5.add(password);
passmd5.calculate();
_password = passmd5.toString();
}
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::setPasswordHash(const char * password) {
if (!_initialized && !_password.length() && password) {
_password = password;
}
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::setRebootOnSuccess(bool reboot){
_rebootOnSuccess = reboot;
return *this;
}
ArduinoOTAClass& ArduinoOTAClass::setMdnsEnabled(bool enabled){
_mdnsEnabled = enabled;
return *this;
}
void ArduinoOTAClass::begin() {
if (_initialized){
log_w("already initialized");
return;
}
if (!_port) {
_port = 3232;
}
if(!_udp_ota.begin(_port)){
log_e("udp bind failed");
return;
}
if (!_hostname.length()) {
char tmp[20];
uint8_t mac[6];
WiFi.macAddress(mac);
sprintf(tmp, "esp32-%02x%02x%02x%02x%02x%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
_hostname = tmp;
}
if(_mdnsEnabled){
MDNS.begin(_hostname.c_str());
MDNS.enableArduino(_port, (_password.length() > 0));
}
_initialized = true;
_state = OTA_IDLE;
#ifdef OTA_DEBUG
OTA_DEBUG.printf("OTA server at: %s.local:%u\n", _hostname.c_str(), _port);
#endif
}
int ArduinoOTAClass::parseInt(){
char data[INT_BUFFER_SIZE];
uint8_t index = 0;
char value;
while(_udp_ota.peek() == ' ') _udp_ota.read();
while(index < INT_BUFFER_SIZE - 1){
value = _udp_ota.peek();
if(value < '0' || value > '9'){
data[index++] = '\0';
return atoi(data);
}
data[index++] = _udp_ota.read();
}
return 0;
}
String ArduinoOTAClass::readStringUntil(char end){
String res = "";
int value;
while(true){
value = _udp_ota.read();
if(value <= 0 || value == end){
return res;
}
res += (char)value;
}
return res;
}
void ArduinoOTAClass::_onRx(){
if (_state == OTA_IDLE) {
int cmd = parseInt();
if (cmd != U_FLASH && cmd != U_SPIFFS)
return;
_cmd = cmd;
_ota_port = parseInt();
_size = parseInt();
_udp_ota.read();
_md5 = readStringUntil('\n');
_md5.trim();
if(_md5.length() != 32){
return;
}
if (_password.length()){
MD5Builder nonce_md5;
nonce_md5.begin();
nonce_md5.add(String(micros()));
nonce_md5.calculate();
_nonce = nonce_md5.toString();
_udp_ota.beginPacket(_udp_ota.remoteIP(), _udp_ota.remotePort());
_udp_ota.printf("AUTH %s", _nonce.c_str());
_udp_ota.endPacket();
_state = OTA_WAITAUTH;
return;
} else {
_udp_ota.beginPacket(_udp_ota.remoteIP(), _udp_ota.remotePort());
_udp_ota.print("OK");
_udp_ota.endPacket();
_ota_ip = _udp_ota.remoteIP();
_state = OTA_RUNUPDATE;
}
} else if (_state == OTA_WAITAUTH) {
int cmd = parseInt();
if (cmd != U_AUTH) {
_state = OTA_IDLE;
return;
}
_udp_ota.read();
String cnonce = readStringUntil(' ');
String response = readStringUntil('\n');
if (cnonce.length() != 32 || response.length() != 32) {
_state = OTA_IDLE;
return;
}
String challenge = _password + ":" + String(_nonce) + ":" + cnonce;
MD5Builder _challengemd5;
_challengemd5.begin();
_challengemd5.add(challenge);
_challengemd5.calculate();
String result = _challengemd5.toString();
if(result.equals(response)){
_udp_ota.beginPacket(_udp_ota.remoteIP(), _udp_ota.remotePort());
_udp_ota.print("OK");
_udp_ota.endPacket();
_ota_ip = _udp_ota.remoteIP();
_state = OTA_RUNUPDATE;
} else {
_udp_ota.beginPacket(_udp_ota.remoteIP(), _udp_ota.remotePort());
_udp_ota.print("Authentication Failed");
_udp_ota.endPacket();
if (_error_callback) _error_callback(OTA_AUTH_ERROR);
_state = OTA_IDLE;
}
}
}
void ArduinoOTAClass::_runUpdate() {
if (!Update.begin(_size, _cmd)) {
#ifdef OTA_DEBUG
Update.printError(OTA_DEBUG);
#endif
if (_error_callback) {
_error_callback(OTA_BEGIN_ERROR);
}
_state = OTA_IDLE;
return;
}
Update.setMD5(_md5.c_str());
if (_start_callback) {
_start_callback();
}
if (_progress_callback) {
_progress_callback(0, _size);
}
WiFiClient client;
if (!client.connect(_ota_ip, _ota_port)) {
if (_error_callback) {
_error_callback(OTA_CONNECT_ERROR);
}
_state = OTA_IDLE;
}
uint32_t written = 0, total = 0, tried = 0;
while (!Update.isFinished() && client.connected()) {
size_t waited = _ota_timeout;
size_t available = client.available();
while (!available && waited){
delay(1);
waited -=1 ;
available = client.available();
}
if (!waited){
if(written && tried++ < 3){
#ifdef OTA_DEBUG
OTA_DEBUG.printf("Try[%u]: %u\n", tried, written);
#endif
if(!client.printf("%u", written)){
#ifdef OTA_DEBUG
OTA_DEBUG.printf("failed to respond\n");
#endif
_state = OTA_IDLE;
break;
}
continue;
}
#ifdef OTA_DEBUG
OTA_DEBUG.printf("Receive Failed\n");
#endif
if (_error_callback) {
_error_callback(OTA_RECEIVE_ERROR);
}
_state = OTA_IDLE;
Update.abort();
return;
}
if(!available){
#ifdef OTA_DEBUG
OTA_DEBUG.printf("No Data: %u\n", waited);
#endif
_state = OTA_IDLE;
break;
}
tried = 0;
static uint8_t buf[1460];
if(available > 1460){
available = 1460;
}
size_t r = client.read(buf, available);
if(r != available){
log_w("didn't read enough! %u != %u", r, available);
}
written = Update.write(buf, r);
if (written > 0) {
if(written != r){
log_w("didn't write enough! %u != %u", written, r);
}
if(!client.printf("%u", written)){
#ifdef OTA_DEBUG
OTA_DEBUG.printf("failed to respond\n");
#endif
}
total += written;
if(_progress_callback) {
_progress_callback(total, _size);
}
} else {
#ifdef OTA_DEBUG
Update.printError(OTA_DEBUG);
#endif
}
}
if (Update.end()) {
client.print("OK");
client.stop();
delay(10);
if (_end_callback) {
_end_callback();
}
if(_rebootOnSuccess){
//let serial/network finish tasks that might be given in _end_callback
delay(100);
ESP.restart();
}
} else {
if (_error_callback) {
_error_callback(OTA_END_ERROR);
}
Update.printError(client);
client.stop();
delay(10);
#ifdef OTA_DEBUG
OTA_DEBUG.print("Update ERROR: ");
Update.printError(OTA_DEBUG);
#endif
_state = OTA_IDLE;
}
}
void ArduinoOTAClass::end() {
_initialized = false;
_udp_ota.stop();
if(_mdnsEnabled){
MDNS.end();
}
_state = OTA_IDLE;
#ifdef OTA_DEBUG
OTA_DEBUG.println("OTA server stopped.");
#endif
}
void ArduinoOTAClass::handle() {
if (!_initialized) {
return;
}
if (_state == OTA_RUNUPDATE) {
_runUpdate();
_state = OTA_IDLE;
}
if(_udp_ota.parsePacket()){
_onRx();
}
_udp_ota.flush(); // always flush, even zero length packets must be flushed.
}
int ArduinoOTAClass::getCommand() {
return _cmd;
}
void ArduinoOTAClass::setTimeout(int timeoutInMillis) {
_ota_timeout = timeoutInMillis;
}
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_ARDUINOOTA)
ArduinoOTAClass ArduinoOTA;
#endif