arduino-esp32/libraries/WiFi/src/WiFiMulti.cpp

218 lines
7.0 KiB
C++
Raw Normal View History

/**
*
2019-03-03 15:49:59 +01:00
* @file WiFiMulti.cpp
* @date 16.05.2015
* @author Markus Sattler
*
* Copyright (c) 2015 Markus Sattler. All rights reserved.
* This file is part of the esp8266 core for Arduino environment.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "WiFiMulti.h"
#include <limits.h>
#include <string.h>
#include <esp32-hal.h>
WiFiMulti::WiFiMulti()
{
}
WiFiMulti::~WiFiMulti()
{
APlistClean();
}
bool WiFiMulti::addAP(const char* ssid, const char *passphrase)
{
return APlistAdd(ssid, passphrase);
}
uint8_t WiFiMulti::run(uint32_t connectTimeout)
{
int8_t scanResult;
uint8_t status = WiFi.status();
if(status == WL_CONNECTED) {
2019-03-03 15:49:59 +01:00
for(uint32_t x = 0; x < APlist.size(); x++) {
if(WiFi.SSID()==APlist[x].ssid){
return status;
}
}
WiFi.disconnect(false,false);
delay(10);
status = WiFi.status();
}
scanResult = WiFi.scanNetworks();
if(scanResult == WIFI_SCAN_RUNNING) {
// scan is running
return WL_NO_SSID_AVAIL;
} else if(scanResult >= 0) {
// scan done analyze
WifiAPlist_t bestNetwork { NULL, NULL };
int bestNetworkDb = INT_MIN;
uint8_t bestBSSID[6];
int32_t bestChannel = 0;
log_i("[WIFI] scan done");
if(scanResult == 0) {
log_e("[WIFI] no networks found");
} else {
log_i("[WIFI] %d networks found", scanResult);
for(int8_t i = 0; i < scanResult; ++i) {
String ssid_scan;
int32_t rssi_scan;
uint8_t sec_scan;
uint8_t* BSSID_scan;
int32_t chan_scan;
WiFi.getNetworkInfo(i, ssid_scan, sec_scan, rssi_scan, BSSID_scan, chan_scan);
bool known = false;
for(uint32_t x = 0; x < APlist.size(); x++) {
WifiAPlist_t entry = APlist[x];
if(ssid_scan == entry.ssid) { // SSID match
known = true;
if(rssi_scan > bestNetworkDb) { // best network
if(sec_scan == WIFI_AUTH_OPEN || entry.passphrase) { // check for passphrase if not open wlan
bestNetworkDb = rssi_scan;
bestChannel = chan_scan;
memcpy((void*) &bestNetwork, (void*) &entry, sizeof(bestNetwork));
memcpy((void*) &bestBSSID, (void*) BSSID_scan, sizeof(bestBSSID));
}
}
break;
}
}
if(known) {
log_d(" ---> %d: [%d][%02X:%02X:%02X:%02X:%02X:%02X] %s (%d) %c", i, chan_scan, BSSID_scan[0], BSSID_scan[1], BSSID_scan[2], BSSID_scan[3], BSSID_scan[4], BSSID_scan[5], ssid_scan.c_str(), rssi_scan, (sec_scan == WIFI_AUTH_OPEN) ? ' ' : '*');
} else {
log_d(" %d: [%d][%02X:%02X:%02X:%02X:%02X:%02X] %s (%d) %c", i, chan_scan, BSSID_scan[0], BSSID_scan[1], BSSID_scan[2], BSSID_scan[3], BSSID_scan[4], BSSID_scan[5], ssid_scan.c_str(), rssi_scan, (sec_scan == WIFI_AUTH_OPEN) ? ' ' : '*');
}
}
}
// clean up ram
WiFi.scanDelete();
if(bestNetwork.ssid) {
log_i("[WIFI] Connecting BSSID: %02X:%02X:%02X:%02X:%02X:%02X SSID: %s Channal: %d (%d)", bestBSSID[0], bestBSSID[1], bestBSSID[2], bestBSSID[3], bestBSSID[4], bestBSSID[5], bestNetwork.ssid, bestChannel, bestNetworkDb);
WiFi.begin(bestNetwork.ssid, bestNetwork.passphrase, bestChannel, bestBSSID);
status = WiFi.status();
auto startTime = millis();
// wait for connection, fail, or timeout
while(status != WL_CONNECTED && status != WL_NO_SSID_AVAIL && status != WL_CONNECT_FAILED && (millis() - startTime) <= connectTimeout) {
delay(10);
status = WiFi.status();
}
switch(status) {
case 3:
log_i("[WIFI] Connecting done.");
log_d("[WIFI] SSID: %s", WiFi.SSID().c_str());
log_d("[WIFI] IP: %s", WiFi.localIP().toString().c_str());
log_d("[WIFI] MAC: %s", WiFi.BSSIDstr().c_str());
log_d("[WIFI] Channel: %d", WiFi.channel());
break;
case 1:
log_e("[WIFI] Connecting Failed AP not found.");
break;
case 4:
log_e("[WIFI] Connecting Failed.");
break;
default:
log_e("[WIFI] Connecting Failed (%d).", status);
break;
}
} else {
log_e("[WIFI] no matching wifi found!");
}
} else {
// start scan
log_d("[WIFI] delete old wifi config...");
WiFi.disconnect();
log_d("[WIFI] start scan");
// scan wifi async mode
WiFi.scanNetworks(true);
}
return status;
}
// ##################################################################################
bool WiFiMulti::APlistAdd(const char* ssid, const char *passphrase)
{
WifiAPlist_t newAP;
if(!ssid || *ssid == 0x00 || strlen(ssid) > 31) {
// fail SSID to long or missing!
2018-07-30 09:18:48 +02:00
log_e("[WIFI][APlistAdd] no ssid or ssid to long");
return false;
}
if(passphrase && strlen(passphrase) > 63) {
// fail passphrase to long!
2018-07-30 09:18:48 +02:00
log_e("[WIFI][APlistAdd] passphrase to long");
return false;
}
newAP.ssid = strdup(ssid);
if(!newAP.ssid) {
2018-07-30 09:18:48 +02:00
log_e("[WIFI][APlistAdd] fail newAP.ssid == 0");
return false;
}
if(passphrase && *passphrase != 0x00) {
newAP.passphrase = strdup(passphrase);
if(!newAP.passphrase) {
2018-07-30 09:18:48 +02:00
log_e("[WIFI][APlistAdd] fail newAP.passphrase == 0");
free(newAP.ssid);
return false;
}
}
APlist.push_back(newAP);
2018-07-30 09:18:48 +02:00
log_i("[WIFI][APlistAdd] add SSID: %s", newAP.ssid);
return true;
}
void WiFiMulti::APlistClean(void)
{
for(uint32_t i = 0; i < APlist.size(); i++) {
WifiAPlist_t entry = APlist[i];
if(entry.ssid) {
free(entry.ssid);
}
if(entry.passphrase) {
free(entry.passphrase);
}
}
APlist.clear();
}