diff --git a/cores/esp32/esp32-hal-ledc.c b/cores/esp32/esp32-hal-ledc.c index 2fe70d6e..d333df36 100644 --- a/cores/esp32/esp32-hal-ledc.c +++ b/cores/esp32/esp32-hal-ledc.c @@ -50,36 +50,39 @@ xSemaphoreHandle _ledc_sys_lock; ** ledc: 14 => Group: 1, Channel: 6, Timer: 3 ** ledc: 15 => Group: 1, Channel: 7, Timer: 3 */ +#define LEDC_CHAN(g,c) LEDC.channel_group[(g)].channel[(c)] +#define LEDC_TIMER(g,t) LEDC.timer_group[(g)].timer[(t)] //uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num)); -void ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk) +static void _ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk) { - ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE); uint8_t group=(chan/8), timer=((chan/2)%4); static bool tHasStarted = false; if(!tHasStarted) { tHasStarted = true; SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN); CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST); - ledc_dev->conf.apb_clk_sel = 1;//LS use apb clock + LEDC.conf.apb_clk_sel = 1;//LS use apb clock #if !CONFIG_DISABLE_HAL_LOCKS _ledc_sys_lock = xSemaphoreCreateMutex(); #endif } LEDC_MUTEX_LOCK(); - ledc_dev->timer_group[group].timer[timer].conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part. - ledc_dev->timer_group[group].timer[timer].conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20. - ledc_dev->timer_group[group].timer[timer].conf.tick_sel = apb_clk;//apb clock + LEDC_TIMER(group, timer).conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part. + LEDC_TIMER(group, timer).conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20. + LEDC_TIMER(group, timer).conf.tick_sel = apb_clk;//apb clock if(group) { - ledc_dev->timer_group[group].timer[timer].conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers + LEDC_TIMER(group, timer).conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers } - ledc_dev->timer_group[group].timer[timer].conf.pause = 0; - ledc_dev->timer_group[group].timer[timer].conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset. - ledc_dev->timer_group[group].timer[timer].conf.rst = 0; + LEDC_TIMER(group, timer).conf.pause = 0; + LEDC_TIMER(group, timer).conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset. + LEDC_TIMER(group, timer).conf.rst = 0; LEDC_MUTEX_UNLOCK(); } -uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num) +//max div_num 0x3FFFF (262143) +//max bit_num 0x1F (31) +static double _ledcSetupTimerFreq(uint8_t chan, double freq, uint8_t bit_num) { uint64_t clk_freq = APB_CLK_FREQ; clk_freq <<= 8;//div_num is 8 bit decimal @@ -95,40 +98,60 @@ uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num) } else if(div_num < 256) { div_num = 256;//highest clock possible } - ledcSetupTimer(chan, div_num, bit_num, apb_clk); - return (clk_freq >> bit_num) / div_num; + _ledcSetupTimer(chan, div_num, bit_num, apb_clk); + //log_i("Fin: %f, Fclk: %uMhz, bits: %u, DIV: %u, Fout: %f", + // freq, apb_clk?80:1, bit_num, div_num, (clk_freq >> bit_num) / (double)div_num); + return (clk_freq >> bit_num) / (double)div_num; } -void ledcSetupChannel(uint8_t chan, uint8_t idle_level) +static double _ledcTimerRead(uint8_t chan) +{ + uint32_t div_num; + uint8_t bit_num; + bool apb_clk; + uint8_t group=(chan/8), timer=((chan/2)%4); + LEDC_MUTEX_LOCK(); + div_num = LEDC_TIMER(group, timer).conf.div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part. + bit_num = LEDC_TIMER(group, timer).conf.bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20. + apb_clk = LEDC_TIMER(group, timer).conf.tick_sel;//apb clock + LEDC_MUTEX_UNLOCK(); + uint64_t clk_freq = 1000000; + if(apb_clk) { + clk_freq *= 80; + } + clk_freq <<= 8;//div_num is 8 bit decimal + return (clk_freq >> bit_num) / (double)div_num; +} + +static void _ledcSetupChannel(uint8_t chan, uint8_t idle_level) { uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4); - ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE); LEDC_MUTEX_LOCK(); - ledc_dev->channel_group[group].channel[channel].conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3 - ledc_dev->channel_group[group].channel[channel].conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off. - ledc_dev->channel_group[group].channel[channel].hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint - ledc_dev->channel_group[group].channel[channel].conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel - ledc_dev->channel_group[group].channel[channel].conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel - ledc_dev->channel_group[group].channel[channel].conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel - ledc_dev->channel_group[group].channel[channel].conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel. - ledc_dev->channel_group[group].channel[channel].duty.duty = 0; - ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel - ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. + LEDC_CHAN(group, channel).conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3 + LEDC_CHAN(group, channel).conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off. + LEDC_CHAN(group, channel).hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint + LEDC_CHAN(group, channel).conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel + LEDC_CHAN(group, channel).conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel + LEDC_CHAN(group, channel).conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel + LEDC_CHAN(group, channel).conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel. + LEDC_CHAN(group, channel).duty.duty = 0; + LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel + LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. if(group) { - ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4); + LEDC_CHAN(group, channel).conf0.val &= ~BIT(4); } else { - ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0; + LEDC_CHAN(group, channel).conf0.clk_en = 0; } LEDC_MUTEX_UNLOCK(); } -uint32_t ledcSetup(uint8_t chan, uint32_t freq, uint8_t bit_num) +double ledcSetup(uint8_t chan, double freq, uint8_t bit_num) { if(chan > 15) { return 0; } - uint32_t res_freq = ledcSetupTimerFreq(chan, freq, bit_num); - ledcSetupChannel(chan, LOW); + double res_freq = _ledcSetupTimerFreq(chan, freq, bit_num); + _ledcSetupChannel(chan, LOW); return res_freq; } @@ -138,24 +161,23 @@ void ledcWrite(uint8_t chan, uint32_t duty) return; } uint8_t group=(chan/8), channel=(chan%8); - ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE); LEDC_MUTEX_LOCK(); - ledc_dev->channel_group[group].channel[channel].duty.duty = duty << 4;//25 bit (21.4) + LEDC_CHAN(group, channel).duty.duty = duty << 4;//25 bit (21.4) if(duty) { - ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 1;//This is the output enable control bit for channel - ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. + LEDC_CHAN(group, channel).conf0.sig_out_en = 1;//This is the output enable control bit for channel + LEDC_CHAN(group, channel).conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. if(group) { - ledc_dev->channel_group[group].channel[channel].conf0.val |= BIT(4); + LEDC_CHAN(group, channel).conf0.val |= BIT(4); } else { - ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 1; + LEDC_CHAN(group, channel).conf0.clk_en = 1; } } else { - ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel - ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. + LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel + LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. if(group) { - ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4); + LEDC_CHAN(group, channel).conf0.val &= ~BIT(4); } else { - ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0; + LEDC_CHAN(group, channel).conf0.clk_en = 0; } } LEDC_MUTEX_UNLOCK(); @@ -166,8 +188,42 @@ uint32_t ledcRead(uint8_t chan) if(chan > 15) { return 0; } - ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE); - return ledc_dev->channel_group[chan/8].channel[chan%8].duty.duty >> 4; + return LEDC.channel_group[chan/8].channel[chan%8].duty.duty >> 4; +} + +double ledcReadFreq(uint8_t chan) +{ + if(!ledcRead(chan)){ + return 0; + } + return _ledcTimerRead(chan); +} + +double ledcWriteTone(uint8_t chan, double freq) +{ + if(chan > 15) { + return 0; + } + if(!freq) { + ledcWrite(chan, 0); + return 0; + } + double res_freq = _ledcSetupTimerFreq(chan, freq, 10); + ledcWrite(chan, 0x1FF); + return res_freq; +} + +double ledcWriteNote(uint8_t chan, note_t note, uint8_t octave){ + const uint16_t noteFrequencyBase[12] = { + // C C# D Eb E F F# G G# A Bb B + 4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902 + }; + + if(octave > 8 || note >= NOTE_MAX){ + return 0; + } + double noteFreq = (double)noteFrequencyBase[note] / (double)(1 << (8-octave)); + return ledcWriteTone(chan, noteFreq); } void ledcAttachPin(uint8_t pin, uint8_t chan) diff --git a/cores/esp32/esp32-hal-ledc.h b/cores/esp32/esp32-hal-ledc.h index 9cbbb129..159f98d5 100644 --- a/cores/esp32/esp32-hal-ledc.h +++ b/cores/esp32/esp32-hal-ledc.h @@ -22,13 +22,21 @@ extern "C" { #include #include +typedef enum { + NOTE_C, NOTE_Cs, NOTE_D, NOTE_Eb, NOTE_E, NOTE_F, NOTE_Fs, NOTE_G, NOTE_Gs, NOTE_A, NOTE_Bb, NOTE_B, NOTE_MAX +} note_t; + //channel 0-15 resolution 1-16bits freq limits depend on resolution -uint32_t ledcSetup(uint8_t channel, uint32_t freq, uint8_t resolution_bits); +double ledcSetup(uint8_t channel, double freq, uint8_t resolution_bits); void ledcWrite(uint8_t channel, uint32_t duty); +double ledcWriteTone(uint8_t channel, double freq); +double ledcWriteNote(uint8_t channel, note_t note, uint8_t octave); uint32_t ledcRead(uint8_t channel); +double ledcReadFreq(uint8_t channel); void ledcAttachPin(uint8_t pin, uint8_t channel); void ledcDetachPin(uint8_t pin); + #ifdef __cplusplus } #endif