Implements UART SerialHardware Refactoring on top of IDF (#5549)

## Summary
This PR is a complete reffactoring of UART Serial Hardware and respective HAL in order to use IDF instead of current Register manipulation approach. 

It  implements Arduino SerialEvent functionality. 

Fix #5287  
Fix #5273 
Fix #5519 
Fix #5247 
Fix #5403
Fix #5429
Fix #5047
Fix #5463
Fix #5362 
Fix #5112  
Fix #5443 

## Impact
It solves many reported issues related to UART.
It was tested and works fine for ESP32, ESP-S2 and ESP32-C3.
This commit is contained in:
Rodrigo Garcia 2021-08-23 11:25:33 -03:00 committed by GitHub
parent 929cf2c2d5
commit b1d072df9f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 327 additions and 477 deletions

View File

@ -5,36 +5,73 @@
#include "pins_arduino.h" #include "pins_arduino.h"
#include "HardwareSerial.h" #include "HardwareSerial.h"
#include "soc/soc_caps.h"
#ifndef SOC_RX0
#if CONFIG_IDF_TARGET_ESP32 #if CONFIG_IDF_TARGET_ESP32
#define SOC_RX0 3
#elif CONFIG_IDF_TARGET_ESP32S2
#define SOC_RX0 44
#elif CONFIG_IDF_TARGET_ESP32C3
#define SOC_RX0 20
#endif
#endif
#ifndef SOC_TX0
#if CONFIG_IDF_TARGET_ESP32
#define SOC_TX0 1
#elif CONFIG_IDF_TARGET_ESP32S2
#define SOC_TX0 43
#elif CONFIG_IDF_TARGET_ESP32C3
#define SOC_TX0 21
#endif
#endif
void serialEvent(void) __attribute__((weak));
void serialEvent(void) {}
#if SOC_UART_NUM > 1
#ifndef RX1 #ifndef RX1
#if CONFIG_IDF_TARGET_ESP32
#define RX1 9 #define RX1 9
#elif CONFIG_IDF_TARGET_ESP32S2
#define RX1 18
#elif CONFIG_IDF_TARGET_ESP32C3
#define RX1 18
#endif
#endif #endif
#ifndef TX1 #ifndef TX1
#if CONFIG_IDF_TARGET_ESP32
#define TX1 10 #define TX1 10
#elif CONFIG_IDF_TARGET_ESP32S2
#define TX1 17
#elif CONFIG_IDF_TARGET_ESP32C3
#define TX1 19
#endif
#endif #endif
void serialEvent1(void) __attribute__((weak));
void serialEvent1(void) {}
#endif /* SOC_UART_NUM > 1 */
#if SOC_UART_NUM > 2
#ifndef RX2 #ifndef RX2
#if CONFIG_IDF_TARGET_ESP32
#define RX2 16 #define RX2 16
#endif #endif
#endif
#ifndef TX2 #ifndef TX2
#if CONFIG_IDF_TARGET_ESP32
#define TX2 17 #define TX2 17
#endif #endif
#else
#ifndef RX1
#define RX1 18
#endif #endif
#ifndef TX1 void serialEvent2(void) __attribute__((weak));
#define TX1 17 void serialEvent2(void) {}
#endif #endif /* SOC_UART_NUM > 2 */
#endif
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_SERIAL) #if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_SERIAL)
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC #if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
@ -42,50 +79,63 @@ HardwareSerial Serial0(0);
#else #else
HardwareSerial Serial(0); HardwareSerial Serial(0);
#endif #endif
#if SOC_UART_NUM > 1
HardwareSerial Serial1(1); HardwareSerial Serial1(1);
#if CONFIG_IDF_TARGET_ESP32 #endif
#if SOC_UART_NUM > 2
HardwareSerial Serial2(2); HardwareSerial Serial2(2);
#endif #endif
#endif #endif
void serialEventRun(void)
{
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
if(Serial0.available()) serialEvent();
#else
if(Serial.available()) serialEvent();
#endif
#if SOC_UART_NUM > 1
if(Serial1.available()) serialEvent1();
#endif
#if SOC_UART_NUM > 2
if(Serial2.available()) serialEvent2();
#endif
}
HardwareSerial::HardwareSerial(int uart_nr) : _uart_nr(uart_nr), _uart(NULL) {} HardwareSerial::HardwareSerial(int uart_nr) : _uart_nr(uart_nr), _uart(NULL) {}
void HardwareSerial::begin(unsigned long baud, uint32_t config, int8_t rxPin, int8_t txPin, bool invert, unsigned long timeout_ms, uint8_t rxfifo_full_thrhd) void HardwareSerial::begin(unsigned long baud, uint32_t config, int8_t rxPin, int8_t txPin, bool invert, unsigned long timeout_ms, uint8_t rxfifo_full_thrhd)
{ {
if(0 > _uart_nr || _uart_nr > 2) { if(0 > _uart_nr || _uart_nr >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use 0, 1 or 2"); log_e("Serial number is invalid, please use numers from 0 to %u", SOC_UART_NUM - 1);
return; return;
} }
if(_uart) { if(_uart) {
end(); // in this case it is a begin() over a previous begin() - maybe to change baud rate
// thus do not disable debug output
end(false);
} }
if(_uart_nr == 0 && rxPin < 0 && txPin < 0) { if(_uart_nr == 0 && rxPin < 0 && txPin < 0) {
#if CONFIG_IDF_TARGET_ESP32 rxPin = SOC_RX0;
rxPin = 3; txPin = SOC_TX0;
txPin = 1;
#elif CONFIG_IDF_TARGET_ESP32S2
rxPin = 44;
txPin = 43;
#elif CONFIG_IDF_TARGET_ESP32C3
rxPin = 20;
txPin = 21;
#endif
} }
#if SOC_UART_NUM > 1
if(_uart_nr == 1 && rxPin < 0 && txPin < 0) { if(_uart_nr == 1 && rxPin < 0 && txPin < 0) {
rxPin = RX1; rxPin = RX1;
txPin = TX1; txPin = TX1;
} }
#if CONFIG_IDF_TARGET_ESP32 #endif
#if SOC_UART_NUM > 2
if(_uart_nr == 2 && rxPin < 0 && txPin < 0) { if(_uart_nr == 2 && rxPin < 0 && txPin < 0) {
rxPin = RX2; rxPin = RX2;
txPin = TX2; txPin = TX2;
} }
#endif #endif
_uart = uartBegin(_uart_nr, baud ? baud : 9600, config, rxPin, txPin, 256, invert, rxfifo_full_thrhd);
_tx_pin = txPin;
_rx_pin = rxPin;
_uart = uartBegin(_uart_nr, baud ? baud : 9600, config, rxPin, txPin, 256, invert, rxfifo_full_thrhd);
if (!baud) { if (!baud) {
// using baud rate as zero, forces it to try to detect the current baud rate in place
uartStartDetectBaudrate(_uart); uartStartDetectBaudrate(_uart);
time_t startMillis = millis(); time_t startMillis = millis();
unsigned long detectedBaudRate = 0; unsigned long detectedBaudRate = 0;
@ -93,7 +143,7 @@ void HardwareSerial::begin(unsigned long baud, uint32_t config, int8_t rxPin, in
yield(); yield();
} }
end(); end(false);
if(detectedBaudRate) { if(detectedBaudRate) {
delay(100); // Give some time... delay(100); // Give some time...
@ -101,8 +151,6 @@ void HardwareSerial::begin(unsigned long baud, uint32_t config, int8_t rxPin, in
} else { } else {
log_e("Could not detect baudrate. Serial data at the port must be present within the timeout for detection to be possible"); log_e("Could not detect baudrate. Serial data at the port must be present within the timeout for detection to be possible");
_uart = NULL; _uart = NULL;
_tx_pin = 255;
_rx_pin = 255;
} }
} }
} }
@ -112,21 +160,16 @@ void HardwareSerial::updateBaudRate(unsigned long baud)
uartSetBaudRate(_uart, baud); uartSetBaudRate(_uart, baud);
} }
void HardwareSerial::end() void HardwareSerial::end(bool turnOffDebug)
{ {
if(uartGetDebug() == _uart_nr) { if(turnOffDebug && uartGetDebug() == _uart_nr) {
uartSetDebug(0); uartSetDebug(0);
} }
delay(10); delay(10);
log_v("pins %d %d",_tx_pin, _rx_pin); uartEnd(_uart);
uartEnd(_uart, _tx_pin, _rx_pin);
_uart = 0; _uart = 0;
} }
size_t HardwareSerial::setRxBufferSize(size_t new_size) {
return uartResizeRxBuffer(_uart, new_size);
}
void HardwareSerial::setDebugOutput(bool en) void HardwareSerial::setDebugOutput(bool en)
{ {
if(_uart == 0) { if(_uart == 0) {
@ -212,10 +255,16 @@ uint32_t HardwareSerial::baudRate()
} }
HardwareSerial::operator bool() const HardwareSerial::operator bool() const
{ {
return true; return uartIsDriverInstalled(_uart);
} }
void HardwareSerial::setRxInvert(bool invert) void HardwareSerial::setRxInvert(bool invert)
{ {
uartSetRxInvert(_uart, invert); uartSetRxInvert(_uart, invert);
} }
void HardwareSerial::setPins(uint8_t rxPin, uint8_t txPin)
{
uartSetPins(_uart, rxPin, txPin);
}

View File

@ -49,6 +49,7 @@
#include "Stream.h" #include "Stream.h"
#include "esp32-hal.h" #include "esp32-hal.h"
#include "soc/soc_caps.h"
class HardwareSerial: public Stream class HardwareSerial: public Stream
{ {
@ -56,7 +57,7 @@ public:
HardwareSerial(int uart_nr); HardwareSerial(int uart_nr);
void begin(unsigned long baud, uint32_t config=SERIAL_8N1, int8_t rxPin=-1, int8_t txPin=-1, bool invert=false, unsigned long timeout_ms = 20000UL, uint8_t rxfifo_full_thrhd = 112); void begin(unsigned long baud, uint32_t config=SERIAL_8N1, int8_t rxPin=-1, int8_t txPin=-1, bool invert=false, unsigned long timeout_ms = 20000UL, uint8_t rxfifo_full_thrhd = 112);
void end(); void end(bool turnOffDebug = true);
void updateBaudRate(unsigned long baud); void updateBaudRate(unsigned long baud);
int available(void); int available(void);
int availableForWrite(void); int availableForWrite(void);
@ -98,16 +99,14 @@ public:
uint32_t baudRate(); uint32_t baudRate();
operator bool() const; operator bool() const;
size_t setRxBufferSize(size_t);
void setDebugOutput(bool); void setDebugOutput(bool);
void setRxInvert(bool); void setRxInvert(bool);
void setPins(uint8_t rxPin, uint8_t txPin);
protected: protected:
int _uart_nr; int _uart_nr;
uart_t* _uart; uart_t* _uart;
uint8_t _tx_pin;
uint8_t _rx_pin;
}; };
extern void serialEventRun(void) __attribute__((weak)); extern void serialEventRun(void) __attribute__((weak));
@ -123,8 +122,10 @@ extern HardwareSerial Serial0;
#else #else
extern HardwareSerial Serial; extern HardwareSerial Serial;
#endif #endif
#if SOC_UART_NUM > 1
extern HardwareSerial Serial1; extern HardwareSerial Serial1;
#if CONFIG_IDF_TARGET_ESP32 #endif
#if SOC_UART_NUM > 2
extern HardwareSerial Serial2; extern HardwareSerial Serial2;
#endif #endif
#endif #endif

View File

@ -14,207 +14,88 @@
#include "esp32-hal-uart.h" #include "esp32-hal-uart.h"
#include "esp32-hal.h" #include "esp32-hal.h"
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h" #include "freertos/semphr.h"
#include "esp_attr.h"
#include "soc/uart_reg.h" #include "driver/uart.h"
#include "soc/uart_struct.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/rtc.h"
#include "hal/uart_ll.h" #include "hal/uart_ll.h"
#include "esp_intr_alloc.h" #include "soc/soc_caps.h"
#include "soc/uart_struct.h"
#include "esp_system.h"
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "soc/dport_reg.h"
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/uart.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "soc/dport_reg.h"
#include "esp32s2/rom/ets_sys.h"
#include "esp32s2/rom/uart.h"
#include "soc/periph_defs.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/ets_sys.h"
#include "esp32c3/rom/uart.h"
#include "soc/periph_defs.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/ets_sys.h"
#include "rom/uart.h"
#include "esp_intr.h"
#endif
#if CONFIG_IDF_TARGET_ESP32
#define UART_PORTS_NUM 3
#define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:( (u==2)?DR_REG_UART2_BASE:0)))
#define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:( (u==2)?U2RXD_IN_IDX:0)))
#define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:( (u==2)?U2TXD_OUT_IDX:0)))
#define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:((u==2)?ETS_UART2_INTR_SOURCE:0)))
#elif CONFIG_IDF_TARGET_ESP32S2
#define UART_PORTS_NUM 2
#define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:0))
#define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:0))
#define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:0))
#define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:0))
#else
#define UART_PORTS_NUM 2
#define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:0))
#define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:0))
#define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:0))
#define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:0))
#endif
static int s_uart_debug_nr = 0; static int s_uart_debug_nr = 0;
struct uart_struct_t { struct uart_struct_t {
uart_dev_t * dev;
#if !CONFIG_DISABLE_HAL_LOCKS #if !CONFIG_DISABLE_HAL_LOCKS
xSemaphoreHandle lock; xSemaphoreHandle lock;
#endif #endif
uint8_t num; uint8_t num;
xQueueHandle queue; bool has_peek;
intr_handle_t intr_handle; uint8_t peek_byte;
}; };
#if CONFIG_DISABLE_HAL_LOCKS #if CONFIG_DISABLE_HAL_LOCKS
#define UART_MUTEX_LOCK() #define UART_MUTEX_LOCK()
#define UART_MUTEX_UNLOCK() #define UART_MUTEX_UNLOCK()
static uart_t _uart_bus_array[] = { static uart_t _uart_bus_array[] = {
{&UART0, 0, NULL, NULL}, {0, false, 0},
{&UART1, 1, NULL, NULL}, #if SOC_UART_NUM > 1
#if CONFIG_IDF_TARGET_ESP32 {1, false, 0},
{&UART2, 2, NULL, NULL} #endif
#if SOC_UART_NUM > 2
{2, false, 0},
#endif #endif
}; };
#else #else
#define UART_MUTEX_LOCK() do {} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS) #define UART_MUTEX_LOCK() do {} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS)
#define UART_MUTEX_UNLOCK() xSemaphoreGive(uart->lock) #define UART_MUTEX_UNLOCK() xSemaphoreGive(uart->lock)
static uart_t _uart_bus_array[] = { static uart_t _uart_bus_array[] = {
{&UART0, NULL, 0, NULL, NULL}, {NULL, 0, false, 0},
{&UART1, NULL, 1, NULL, NULL}, #if SOC_UART_NUM > 1
#if CONFIG_IDF_TARGET_ESP32 {NULL, 1, false, 0},
{&UART2, NULL, 2, NULL, NULL} #endif
#if SOC_UART_NUM > 2
{NULL, 2, false, 0},
#endif #endif
}; };
#endif #endif
static void uart_on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb); bool uartIsDriverInstalled(uart_t* uart)
static void ARDUINO_ISR_ATTR _uart_isr(void *arg)
{
uint8_t i, c;
BaseType_t xHigherPriorityTaskWoken;
uart_t* uart;
for(i=0;i<UART_PORTS_NUM;i++){
uart = &_uart_bus_array[i];
if(uart->intr_handle == NULL){
continue;
}
uart->dev->int_clr.rxfifo_full = 1;
uart->dev->int_clr.frm_err = 1;
uart->dev->int_clr.rxfifo_tout = 1;
#if CONFIG_IDF_TARGET_ESP32
while(uart->dev->status.rxfifo_cnt || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
c = uart->dev->fifo.rw_byte;
#else
uint32_t fifo_reg = UART_FIFO_AHB_REG(i);
while(uart->dev->status.rxfifo_cnt) {
c = ESP_REG(fifo_reg);
#endif
if(uart->queue != NULL) {
xQueueSendFromISR(uart->queue, &c, &xHigherPriorityTaskWoken);
}
}
}
if (xHigherPriorityTaskWoken) {
portYIELD_FROM_ISR();
}
}
static void uartEnableInterrupt(uart_t* uart, uint8_t rxfifo_full_thrhd)
{
UART_MUTEX_LOCK();
uart->dev->conf1.rxfifo_full_thrhd = rxfifo_full_thrhd;
#if CONFIG_IDF_TARGET_ESP32
uart->dev->conf1.rx_tout_thrhd = 2;
#else
uart->dev->mem_conf.rx_tout_thrhd = 2;
#endif
uart->dev->conf1.rx_tout_en = 1;
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
esp_intr_alloc(UART_INTR_SOURCE(uart->num), (int)ARDUINO_ISR_FLAG, _uart_isr, NULL, &uart->intr_handle);
UART_MUTEX_UNLOCK();
}
static void uartDisableInterrupt(uart_t* uart)
{
UART_MUTEX_LOCK();
#if CONFIG_IDF_TARGET_ESP32
uart->dev->conf1.val = 0;
#endif
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
esp_intr_free(uart->intr_handle);
uart->intr_handle = NULL;
UART_MUTEX_UNLOCK();
}
static void uartDetachRx(uart_t* uart, uint8_t rxPin)
{ {
if(uart == NULL) { if(uart == NULL) {
return; return 0;
}
pinMatrixInDetach(UART_RXD_IDX(uart->num), false, false);
uartDisableInterrupt(uart);
} }
static void uartDetachTx(uart_t* uart, uint8_t txPin) if (uart_is_driver_installed(uart->num)) {
{ return true;
if(uart == NULL) {
return;
} }
pinMatrixOutDetach(txPin, false, false); return false;
} }
static void uartAttachRx(uart_t* uart, uint8_t rxPin, bool inverted, uint8_t rxfifo_full_thrhd) void uartSetPins(uart_t* uart, uint8_t rxPin, uint8_t txPin)
{ {
if(uart == NULL || rxPin >= GPIO_PIN_COUNT) { if(uart == NULL || rxPin >= SOC_GPIO_PIN_COUNT || txPin >= SOC_GPIO_PIN_COUNT) {
return; return;
} }
pinMode(rxPin, INPUT); UART_MUTEX_LOCK();
uartEnableInterrupt(uart, rxfifo_full_thrhd); ESP_ERROR_CHECK(uart_set_pin(uart->num, txPin, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
pinMatrixInAttach(rxPin, UART_RXD_IDX(uart->num), inverted); UART_MUTEX_UNLOCK();
} }
static void uartAttachTx(uart_t* uart, uint8_t txPin, bool inverted)
{
if(uart == NULL || txPin >= GPIO_PIN_COUNT) {
return;
}
pinMode(txPin, OUTPUT);
pinMatrixOutAttach(txPin, UART_TXD_IDX(uart->num), inverted, false);
}
uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted, uint8_t rxfifo_full_thrhd) uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted, uint8_t rxfifo_full_thrhd)
{ {
if(uart_nr >= UART_PORTS_NUM) { if(uart_nr >= SOC_UART_NUM) {
return NULL; return NULL;
} }
@ -224,6 +105,10 @@ uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rx
uart_t* uart = &_uart_bus_array[uart_nr]; uart_t* uart = &_uart_bus_array[uart_nr];
if (uart_is_driver_installed(uart_nr)) {
uartEnd(uart);
}
#if !CONFIG_DISABLE_HAL_LOCKS #if !CONFIG_DISABLE_HAL_LOCKS
if(uart->lock == NULL) { if(uart->lock == NULL) {
uart->lock = xSemaphoreCreateMutex(); uart->lock = xSemaphoreCreateMutex();
@ -233,190 +118,144 @@ uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rx
} }
#endif #endif
if(queueLen && uart->queue == NULL) {
uart->queue = xQueueCreate(queueLen, sizeof(uint8_t)); //initialize the queue
if(uart->queue == NULL) {
return NULL;
}
}
#if CONFIG_IDF_TARGET_ESP32C3
#else
if(uart_nr == 1){
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART1_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART1_RST);
#if CONFIG_IDF_TARGET_ESP32
} else if(uart_nr == 2){
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART2_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART2_RST);
#endif
} else {
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART_RST);
}
#endif
uartFlush(uart);
uartSetBaudRate(uart, baudrate);
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
uart->dev->conf0.val = config;
#define TWO_STOP_BITS_CONF 0x3
#define ONE_STOP_BITS_CONF 0x1
if ( uart->dev->conf0.stop_bit_num == TWO_STOP_BITS_CONF) { uart_config_t uart_config;
uart->dev->conf0.stop_bit_num = ONE_STOP_BITS_CONF; uart_config.baud_rate = baudrate;
uart->dev->rs485_conf.dl1_en = 1; uart_config.data_bits = (config & 0xc) >> 2;
uart_config.parity = (config & 0x3);
uart_config.stop_bits = (config & 0x30) >> 4;
uart_config.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
uart_config.rx_flow_ctrl_thresh = rxfifo_full_thrhd;
uart_config.source_clk = UART_SCLK_APB;
ESP_ERROR_CHECK(uart_driver_install(uart_nr, 2*queueLen, 0, 0, NULL, 0));
ESP_ERROR_CHECK(uart_param_config(uart_nr, &uart_config));
ESP_ERROR_CHECK(uart_set_pin(uart_nr, txPin, rxPin, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
// Is it right or the idea is to swap rx and tx pins?
if (inverted) {
// invert signal for both Rx and Tx
ESP_ERROR_CHECK(uart_set_line_inverse(uart_nr, UART_SIGNAL_TXD_INV | UART_SIGNAL_RXD_INV));
} }
// tx_idle_num : idle interval after tx FIFO is empty(unit: the time it takes to send one bit under current baudrate)
// Setting it to 0 prevents line idle time/delays when sending messages with small intervals
uart->dev->idle_conf.tx_idle_num = 0; //
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
if(rxPin != -1) { uartFlush(uart);
uartAttachRx(uart, rxPin, inverted, rxfifo_full_thrhd);
}
if(txPin != -1) {
uartAttachTx(uart, txPin, inverted);
}
addApbChangeCallback(uart, uart_on_apb_change);
return uart; return uart;
} }
void uartEnd(uart_t* uart, uint8_t txPin, uint8_t rxPin) void uartEnd(uart_t* uart)
{ {
if(uart == NULL) { if(uart == NULL) {
return; return;
} }
removeApbChangeCallback(uart, uart_on_apb_change);
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
if(uart->queue != NULL) { uart_driver_delete(uart->num);
vQueueDelete(uart->queue);
uart->queue = NULL;
}
uart->dev->conf0.val = 0;
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
uartDetachRx(uart, rxPin);
uartDetachTx(uart, txPin);
} }
size_t uartResizeRxBuffer(uart_t * uart, size_t new_size) {
if(uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
if(uart->queue != NULL) {
vQueueDelete(uart->queue);
uart->queue = xQueueCreate(new_size, sizeof(uint8_t));
if(uart->queue == NULL) {
UART_MUTEX_UNLOCK();
return 0;
}
}
UART_MUTEX_UNLOCK();
return new_size;
}
void uartSetRxInvert(uart_t* uart, bool invert) void uartSetRxInvert(uart_t* uart, bool invert)
{ {
if (uart == NULL) if (uart == NULL)
return; return;
#if 0
// POTENTIAL ISSUE :: original code only set/reset rxd_inv bit
// IDF or LL set/reset the whole inv_mask!
if (invert) if (invert)
uart->dev->conf0.rxd_inv = 1; ESP_ERROR_CHECK(uart_set_line_inverse(uart->num, UART_SIGNAL_RXD_INV));
else else
uart->dev->conf0.rxd_inv = 0; ESP_ERROR_CHECK(uart_set_line_inverse(uart->num, UART_SIGNAL_INV_DISABLE));
#else
// this implementation is better over IDF API because it only affects RXD
// this is supported in ESP32, ESP32-S2 and ESP32-C3
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
if (invert)
hw->conf0.rxd_inv = 1;
else
hw->conf0.rxd_inv = 0;
#endif
} }
uint32_t uartAvailable(uart_t* uart) uint32_t uartAvailable(uart_t* uart)
{ {
if(uart == NULL || uart->queue == NULL) {
if(uart == NULL) {
return 0; return 0;
} }
#ifdef UART_READ_RX_FIFO
return (uxQueueMessagesWaiting(uart->queue) + uart->dev->status.rxfifo_cnt) ; UART_MUTEX_LOCK();
#else size_t available;
return uxQueueMessagesWaiting(uart->queue); uart_get_buffered_data_len(uart->num, &available);
#endif if (uart->has_peek) available++;
UART_MUTEX_UNLOCK();
return available;
} }
uint32_t uartAvailableForWrite(uart_t* uart) uint32_t uartAvailableForWrite(uart_t* uart)
{ {
if(uart == NULL) { if(uart == NULL) {
return 0; return 0;
} }
return 0x7f - uart->dev->status.txfifo_cnt; UART_MUTEX_LOCK();
uint32_t available = uart_ll_get_txfifo_len(UART_LL_GET_HW(uart->num));
UART_MUTEX_UNLOCK();
return available;
} }
#ifdef UART_READ_RX_FIFO
void uartRxFifoToQueue(uart_t* uart)
{
uint8_t c;
UART_MUTEX_LOCK();
//disable interrupts
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
#if CONFIG_IDF_TARGET_ESP32
while (uart->dev->status.rxfifo_cnt || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
c = uart->dev->fifo.rw_byte;
#else
uint32_t fifo_reg = UART_FIFO_AHB_REG(uart->num);
while (uart->dev->status.rxfifo_cnt) {
c = ESP_REG(fifo_reg);
#endif
xQueueSend(uart->queue, &c, 0);
}
//enable interrupts
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
UART_MUTEX_UNLOCK();
}
#endif
uint8_t uartRead(uart_t* uart) uint8_t uartRead(uart_t* uart)
{ {
if(uart == NULL || uart->queue == NULL) { if(uart == NULL) {
return 0; return 0;
} }
uint8_t c; uint8_t c = 0;
#ifdef UART_READ_RX_FIFO
if ((uxQueueMessagesWaiting(uart->queue) == 0) && (uart->dev->status.rxfifo_cnt > 0)) UART_MUTEX_LOCK();
{
uartRxFifoToQueue(uart); if (uart->has_peek) {
uart->has_peek = false;
c = uart->peek_byte;
} else {
int len = uart_read_bytes(uart->num, &c, 1, 20 / portTICK_RATE_MS);
if (len == 0) {
c = 0;
} }
#endif }
if(xQueueReceive(uart->queue, &c, 0)) { UART_MUTEX_UNLOCK();
return c; return c;
} }
return 0;
}
uint8_t uartPeek(uart_t* uart) uint8_t uartPeek(uart_t* uart)
{ {
if(uart == NULL || uart->queue == NULL) { if(uart == NULL) {
return 0; return 0;
} }
uint8_t c; uint8_t c = 0;
#ifdef UART_READ_RX_FIFO
if ((uxQueueMessagesWaiting(uart->queue) == 0) && (uart->dev->status.rxfifo_cnt > 0)) UART_MUTEX_LOCK();
{
uartRxFifoToQueue(uart); if (uart->has_peek) {
c = uart->peek_byte;
} else {
int len = uart_read_bytes(uart->num, &c, 1, 20 / portTICK_RATE_MS);
if (len == 0) {
c = 0;
} else {
uart->has_peek = true;
uart->peek_byte = c;
} }
#endif }
if(xQueuePeek(uart->queue, &c, 0)) { UART_MUTEX_UNLOCK();
return c; return c;
} }
return 0;
}
void uartWrite(uart_t* uart, uint8_t c) void uartWrite(uart_t* uart, uint8_t c)
{ {
@ -424,12 +263,7 @@ void uartWrite(uart_t* uart, uint8_t c)
return; return;
} }
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
while(uart->dev->status.txfifo_cnt >= 0x7E); uart_write_bytes(uart->num, &c, 1);
#if CONFIG_IDF_TARGET_ESP32
uart->dev->fifo.rw_byte = c;
#else
ESP_REG(UART_FIFO_AHB_REG(uart->num)) = c;
#endif
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
} }
@ -438,19 +272,9 @@ void uartWriteBuf(uart_t* uart, const uint8_t * data, size_t len)
if(uart == NULL) { if(uart == NULL) {
return; return;
} }
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
#ifndef CONFIG_IDF_TARGET_ESP32 uart_write_bytes(uart->num, data, len);
uint32_t fifo_reg = UART_FIFO_AHB_REG(uart->num);
#endif
while(len) {
while(uart->dev->status.txfifo_cnt >= 0x7E);
#if CONFIG_IDF_TARGET_ESP32
uart->dev->fifo.rw_byte = *data++;
#else
ESP_REG(fifo_reg) = *data++;
#endif
len--;
}
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
} }
@ -466,26 +290,11 @@ void uartFlushTxOnly(uart_t* uart, bool txOnly)
} }
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
#if CONFIG_IDF_TARGET_ESP32 ESP_ERROR_CHECK(uart_wait_tx_done(uart->num, portMAX_DELAY));
while(uart->dev->status.txfifo_cnt || uart->dev->status.st_utx_out);
if ( !txOnly ) { if ( !txOnly ) {
//Due to hardware issue, we can not use fifo_rst to reset uart fifo. ESP_ERROR_CHECK(uart_flush_input(uart->num));
//See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
// we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
while(uart->dev->status.rxfifo_cnt != 0 || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
READ_PERI_REG(UART_FIFO_REG(uart->num));
} }
xQueueReset(uart->queue);
}
#else
while(uart->dev->status.txfifo_cnt);
uart->dev->conf0.txfifo_rst = 1;
uart->dev->conf0.txfifo_rst = 0;
#endif
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
} }
@ -495,100 +304,41 @@ void uartSetBaudRate(uart_t* uart, uint32_t baud_rate)
return; return;
} }
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
uart_ll_set_baudrate(uart->dev, baud_rate); uart_ll_set_baudrate(UART_LL_GET_HW(uart->num), baud_rate);
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
} }
static void uart_on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb)
{
uart_t* uart = (uart_t*)arg;
if(ev_type == APB_BEFORE_CHANGE){
UART_MUTEX_LOCK();
//disabple interrupt
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
// read RX fifo
uint8_t c;
// BaseType_t xHigherPriorityTaskWoken;
#if CONFIG_IDF_TARGET_ESP32
while(uart->dev->status.rxfifo_cnt != 0 || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
c = uart->dev->fifo.rw_byte;
#else
uint32_t fifo_reg = UART_FIFO_AHB_REG(uart->num);
while(uart->dev->status.rxfifo_cnt != 0) {
c = ESP_REG(fifo_reg);
#endif
if(uart->queue != NULL ) {
xQueueSend(uart->queue, &c, 1); //&xHigherPriorityTaskWoken);
}
}
UART_MUTEX_UNLOCK();
// wait TX empty
#if CONFIG_IDF_TARGET_ESP32
while(uart->dev->status.txfifo_cnt || uart->dev->status.st_utx_out);
#else
while(uart->dev->status.txfifo_cnt);
#endif
} else {
//todo:
// set baudrate
UART_MUTEX_LOCK();
uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F);
uint32_t baud_rate = ((old_apb<<4)/clk_div);
clk_div = ((new_apb<<4)/baud_rate);
uart->dev->clk_div.div_int = clk_div>>4 ;
uart->dev->clk_div.div_frag = clk_div & 0xf;
//enable interrupts
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
UART_MUTEX_UNLOCK();
}
}
uint32_t uartGetBaudRate(uart_t* uart) uint32_t uartGetBaudRate(uart_t* uart)
{ {
if(uart == NULL) { if(uart == NULL) {
return 0; return 0;
} }
uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F); UART_MUTEX_LOCK();
if(!clk_div) { uint32_t baud_rate = uart_ll_get_baudrate(UART_LL_GET_HW(uart->num));
return 0; UART_MUTEX_UNLOCK();
} return baud_rate;
return ((getApbFrequency()<<4)/clk_div);
} }
static void ARDUINO_ISR_ATTR uart0_write_char(char c) static void ARDUINO_ISR_ATTR uart0_write_char(char c)
{ {
#if CONFIG_IDF_TARGET_ESP32 while (uart_ll_get_txfifo_len(&UART0) == 0);
while(((ESP_REG(0x01C+DR_REG_UART_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) >= 0x7E); uart_ll_write_txfifo(&UART0, (const uint8_t *) &c, 1);
ESP_REG(DR_REG_UART_BASE) = c;
#else
while(UART0.status.txfifo_cnt == 0x7F);
WRITE_PERI_REG(UART_FIFO_AHB_REG(0), c);
#endif
} }
#if SOC_UART_NUM > 1
static void ARDUINO_ISR_ATTR uart1_write_char(char c) static void ARDUINO_ISR_ATTR uart1_write_char(char c)
{ {
#if CONFIG_IDF_TARGET_ESP32 while (uart_ll_get_txfifo_len(&UART1) == 0);
while(((ESP_REG(0x01C+DR_REG_UART1_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) >= 0x7E); uart_ll_write_txfifo(&UART1, (const uint8_t *) &c, 1);
ESP_REG(DR_REG_UART1_BASE) = c;
#else
while(UART1.status.txfifo_cnt == 0x7F);
WRITE_PERI_REG(UART_FIFO_AHB_REG(1), c);
#endif
} }
#endif
#if CONFIG_IDF_TARGET_ESP32 #if SOC_UART_NUM > 2
static void ARDUINO_ISR_ATTR uart2_write_char(char c) static void ARDUINO_ISR_ATTR uart2_write_char(char c)
{ {
while(((ESP_REG(0x01C+DR_REG_UART2_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) >= 0x7E); while (uart_ll_get_txfifo_len(&UART2) == 0);
ESP_REG(DR_REG_UART2_BASE) = c; uart_ll_write_txfifo(&UART2, (const uint8_t *) &c, 1);
} }
#endif #endif
@ -598,10 +348,12 @@ void uart_install_putc()
case 0: case 0:
ets_install_putc1((void (*)(char)) &uart0_write_char); ets_install_putc1((void (*)(char)) &uart0_write_char);
break; break;
#if SOC_UART_NUM > 1
case 1: case 1:
ets_install_putc1((void (*)(char)) &uart1_write_char); ets_install_putc1((void (*)(char)) &uart1_write_char);
break; break;
#if CONFIG_IDF_TARGET_ESP32 #endif
#if SOC_UART_NUM > 2
case 2: case 2:
ets_install_putc1((void (*)(char)) &uart2_write_char); ets_install_putc1((void (*)(char)) &uart2_write_char);
break; break;
@ -614,7 +366,7 @@ void uart_install_putc()
void uartSetDebug(uart_t* uart) void uartSetDebug(uart_t* uart)
{ {
if(uart == NULL || uart->num >= UART_PORTS_NUM) { if(uart == NULL || uart->num >= SOC_UART_NUM) {
s_uart_debug_nr = -1; s_uart_debug_nr = -1;
//ets_install_putc1(NULL); //ets_install_putc1(NULL);
//return; //return;
@ -669,6 +421,7 @@ int log_printf(const char *format, ...)
return len; return len;
} }
static void log_print_buf_line(const uint8_t *b, size_t len, size_t total_len){ static void log_print_buf_line(const uint8_t *b, size_t len, size_t total_len){
for(size_t i = 0; i<len; i++){ for(size_t i = 0; i<len; i++){
log_printf("%s0x%02x,",i?" ":"", b[i]); log_printf("%s0x%02x,",i?" ":"", b[i]);
@ -705,42 +458,89 @@ void log_print_buf(const uint8_t *b, size_t len){
*/ */
unsigned long uartBaudrateDetect(uart_t *uart, bool flg) unsigned long uartBaudrateDetect(uart_t *uart, bool flg)
{ {
while(uart->dev->rxd_cnt.edge_cnt < 30) { // UART_PULSE_NUM(uart_num) if(uart == NULL) {
return 0;
}
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
while(hw->rxd_cnt.edge_cnt < 30) { // UART_PULSE_NUM(uart_num)
if(flg) return 0; if(flg) return 0;
ets_delay_us(1000); ets_delay_us(1000);
} }
UART_MUTEX_LOCK(); UART_MUTEX_LOCK();
unsigned long ret = ((uart->dev->lowpulse.min_cnt + uart->dev->highpulse.min_cnt) >> 1) + 12; //log_i("lowpulse_min_cnt = %d hightpulse_min_cnt = %d", hw->lowpulse.min_cnt, hw->highpulse.min_cnt);
unsigned long ret = ((hw->lowpulse.min_cnt + hw->highpulse.min_cnt) >> 1);
UART_MUTEX_UNLOCK(); UART_MUTEX_UNLOCK();
return ret; return ret;
} }
/* /*
* To start detection of baud rate with the uart the auto_baud.en bit needs to be cleared and set. The bit period is * To start detection of baud rate with the uart the auto_baud.en bit needs to be cleared and set. The bit period is
* detected calling uartBadrateDetect(). The raw baudrate is computed using the UART_CLK_FREQ. The raw baudrate is * detected calling uartBadrateDetect(). The raw baudrate is computed using the UART_CLK_FREQ. The raw baudrate is
* rounded to the closed real baudrate. * rounded to the closed real baudrate.
*
* ESP32-C3 reports wrong baud rate detection as shown below:
*
* This will help in a future recall for the C3.
* Baud Sent: Baud Read:
* 300 --> 19536
* 2400 --> 19536
* 4800 --> 19536
* 9600 --> 28818
* 19200 --> 57678
* 38400 --> 115440
* 57600 --> 173535
* 115200 --> 347826
* 230400 --> 701754
*
*
*/ */
void uartStartDetectBaudrate(uart_t *uart) { void uartStartDetectBaudrate(uart_t *uart) {
if(!uart) return; if(uart == NULL) {
#ifndef CONFIG_IDF_TARGET_ESP32C3 return;
uart->dev->auto_baud.glitch_filt = 0x08; }
uart->dev->auto_baud.en = 0;
uart->dev->auto_baud.en = 1; uart_dev_t *hw = UART_LL_GET_HW(uart->num);
#ifdef CONFIG_IDF_TARGET_ESP32C3
// ESP32-C3 requires further testing
// Baud rate detection returns wrong values
log_e("ESP32-C3 baud rate detection is not supported.");
return;
// Code bellow for C3 kept for future recall
//hw->rx_filt.glitch_filt = 0x08;
//hw->rx_filt.glitch_filt_en = 1;
//hw->conf0.autobaud_en = 0;
//hw->conf0.autobaud_en = 1;
#else
hw->auto_baud.glitch_filt = 0x08;
hw->auto_baud.en = 0;
hw->auto_baud.en = 1;
#endif #endif
} }
unsigned long unsigned long
uartDetectBaudrate(uart_t *uart) uartDetectBaudrate(uart_t *uart)
{ {
#ifndef CONFIG_IDF_TARGET_ESP32C3 if(uart == NULL) {
return 0;
}
#ifndef CONFIG_IDF_TARGET_ESP32C3 // ESP32-C3 requires further testing - Baud rate detection returns wrong values
static bool uartStateDetectingBaudrate = false; static bool uartStateDetectingBaudrate = false;
uart_dev_t *hw = UART_LL_GET_HW(uart->num);
if(!uartStateDetectingBaudrate) { if(!uartStateDetectingBaudrate) {
uart->dev->auto_baud.glitch_filt = 0x08; uartStartDetectBaudrate(uart);
uart->dev->auto_baud.en = 0;
uart->dev->auto_baud.en = 1;
uartStateDetectingBaudrate = true; uartStateDetectingBaudrate = true;
} }
@ -748,11 +548,21 @@ uartDetectBaudrate(uart_t *uart)
if (!divisor) { if (!divisor) {
return 0; return 0;
} }
// log_i(...) below has been used to check C3 baud rate detection results
//log_i("Divisor = %d\n", divisor);
//log_i("BAUD RATE based on Positive Pulse %d\n", getApbFrequency()/((hw->pospulse.min_cnt + 1)/2));
//log_i("BAUD RATE based on Negative Pulse %d\n", getApbFrequency()/((hw->negpulse.min_cnt + 1)/2));
uart->dev->auto_baud.en = 0;
#ifdef CONFIG_IDF_TARGET_ESP32C3
//hw->conf0.autobaud_en = 0;
#else
hw->auto_baud.en = 0;
#endif
uartStateDetectingBaudrate = false; // Initialize for the next round uartStateDetectingBaudrate = false; // Initialize for the next round
unsigned long baudrate = getApbFrequency() / divisor; unsigned long baudrate = getApbFrequency() / divisor;
//log_i("APB_FREQ = %d\nraw baudrate detected = %d", getApbFrequency(), baudrate);
static const unsigned long default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400}; static const unsigned long default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400};
@ -770,17 +580,7 @@ uartDetectBaudrate(uart_t *uart)
return default_rates[i]; return default_rates[i];
#else #else
return 0; log_e("ESP32-C3 baud rate detection is not supported.");
#endif
}
/*
* Returns the status of the RX state machine, if the value is non-zero the state machine is active.
*/
bool uartRxActive(uart_t* uart) {
#if CONFIG_IDF_TARGET_ESP32
return uart->dev->status.st_urx_out != 0;
#else
return 0; return 0;
#endif #endif
} }

View File

@ -52,7 +52,7 @@ struct uart_struct_t;
typedef struct uart_struct_t uart_t; typedef struct uart_struct_t uart_t;
uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted, uint8_t rxfifo_full_thrhd); uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted, uint8_t rxfifo_full_thrhd);
void uartEnd(uart_t* uart, uint8_t rxPin, uint8_t txPin); void uartEnd(uart_t* uart);
uint32_t uartAvailable(uart_t* uart); uint32_t uartAvailable(uart_t* uart);
uint32_t uartAvailableForWrite(uart_t* uart); uint32_t uartAvailableForWrite(uart_t* uart);
@ -68,17 +68,17 @@ void uartFlushTxOnly(uart_t* uart, bool txOnly );
void uartSetBaudRate(uart_t* uart, uint32_t baud_rate); void uartSetBaudRate(uart_t* uart, uint32_t baud_rate);
uint32_t uartGetBaudRate(uart_t* uart); uint32_t uartGetBaudRate(uart_t* uart);
size_t uartResizeRxBuffer(uart_t* uart, size_t new_size);
void uartSetRxInvert(uart_t* uart, bool invert); void uartSetRxInvert(uart_t* uart, bool invert);
void uartSetDebug(uart_t* uart); void uartSetDebug(uart_t* uart);
int uartGetDebug(); int uartGetDebug();
bool uartIsDriverInstalled(uart_t* uart);
void uartSetPins(uart_t* uart, uint8_t rxPin, uint8_t txPin);
void uartStartDetectBaudrate(uart_t *uart); void uartStartDetectBaudrate(uart_t *uart);
unsigned long uartDetectBaudrate(uart_t *uart); unsigned long uartDetectBaudrate(uart_t *uart);
bool uartRxActive(uart_t* uart);
#ifdef __cplusplus #ifdef __cplusplus
} }