/* Esp.cpp - ESP31B-specific APIs Copyright (c) 2015 Ivan Grokhotkov. All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "Arduino.h" #include "Esp.h" #include "rom/spi_flash.h" #include "esp_sleep.h" #include "esp_spi_flash.h" #include #include #include /* Main header of binary image */ typedef struct { uint8_t magic; uint8_t segment_count; uint8_t spi_mode; /* flash read mode (esp_image_spi_mode_t as uint8_t) */ uint8_t spi_speed: 4; /* flash frequency (esp_image_spi_freq_t as uint8_t) */ uint8_t spi_size: 4; /* flash chip size (esp_image_flash_size_t as uint8_t) */ uint32_t entry_addr; uint8_t encrypt_flag; /* encrypt flag */ uint8_t extra_header[15]; /* ESP32 additional header, unused by second bootloader */ } esp_image_header_t; #define ESP_IMAGE_HEADER_MAGIC 0xE9 /** * User-defined Literals * usage: * * uint32_t = test = 10_MHz; // --> 10000000 */ unsigned long long operator"" _kHz(unsigned long long x) { return x * 1000; } unsigned long long operator"" _MHz(unsigned long long x) { return x * 1000 * 1000; } unsigned long long operator"" _GHz(unsigned long long x) { return x * 1000 * 1000 * 1000; } unsigned long long operator"" _kBit(unsigned long long x) { return x * 1024; } unsigned long long operator"" _MBit(unsigned long long x) { return x * 1024 * 1024; } unsigned long long operator"" _GBit(unsigned long long x) { return x * 1024 * 1024 * 1024; } unsigned long long operator"" _kB(unsigned long long x) { return x * 1024; } unsigned long long operator"" _MB(unsigned long long x) { return x * 1024 * 1024; } unsigned long long operator"" _GB(unsigned long long x) { return x * 1024 * 1024 * 1024; } EspClass ESP; void EspClass::deepSleep(uint32_t time_us) { esp_deep_sleep(time_us); } uint32_t EspClass::getCycleCount() { uint32_t ccount; __asm__ __volatile__("esync; rsr %0,ccount":"=a" (ccount)); return ccount; } void EspClass::restart(void) { esp_restart(); } uint32_t EspClass::getHeapSize(void) { multi_heap_info_t info; heap_caps_get_info(&info, MALLOC_CAP_INTERNAL); return info.total_free_bytes + info.total_allocated_bytes; } uint32_t EspClass::getFreeHeap(void) { return heap_caps_get_free_size(MALLOC_CAP_INTERNAL); } uint32_t EspClass::getMinFreeHeap(void) { return heap_caps_get_minimum_free_size(MALLOC_CAP_INTERNAL); } uint32_t EspClass::getMaxAllocHeap(void) { return heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL); } uint32_t EspClass::getPsramSize(void) { multi_heap_info_t info; heap_caps_get_info(&info, MALLOC_CAP_SPIRAM); return info.total_free_bytes + info.total_allocated_bytes; } uint32_t EspClass::getFreePsram(void) { return heap_caps_get_free_size(MALLOC_CAP_SPIRAM); } uint32_t EspClass::getMinFreePsram(void) { return heap_caps_get_minimum_free_size(MALLOC_CAP_SPIRAM); } uint32_t EspClass::getMaxAllocPsram(void) { return heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM); } uint8_t EspClass::getChipRevision(void) { esp_chip_info_t chip_info; esp_chip_info(&chip_info); return chip_info.revision; } const char * EspClass::getSdkVersion(void) { return esp_get_idf_version(); } uint32_t EspClass::getFlashChipSize(void) { esp_image_header_t fhdr; if(flashRead(0x1000, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) { return 0; } return magicFlashChipSize(fhdr.spi_size); } uint32_t EspClass::getFlashChipSpeed(void) { esp_image_header_t fhdr; if(flashRead(0x1000, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) { return 0; } return magicFlashChipSpeed(fhdr.spi_speed); } FlashMode_t EspClass::getFlashChipMode(void) { esp_image_header_t fhdr; if(flashRead(0x1000, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) { return FM_UNKNOWN; } return magicFlashChipMode(fhdr.spi_mode); } uint32_t EspClass::magicFlashChipSize(uint8_t byte) { switch(byte & 0x0F) { case 0x0: // 8 MBit (1MB) return (1_MB); case 0x1: // 16 MBit (2MB) return (2_MB); case 0x2: // 32 MBit (4MB) return (4_MB); case 0x3: // 64 MBit (8MB) return (8_MB); case 0x4: // 128 MBit (16MB) return (16_MB); default: // fail? return 0; } } uint32_t EspClass::magicFlashChipSpeed(uint8_t byte) { switch(byte & 0x0F) { case 0x0: // 40 MHz return (40_MHz); case 0x1: // 26 MHz return (26_MHz); case 0x2: // 20 MHz return (20_MHz); case 0xf: // 80 MHz return (80_MHz); default: // fail? return 0; } } FlashMode_t EspClass::magicFlashChipMode(uint8_t byte) { FlashMode_t mode = (FlashMode_t) byte; if(mode > FM_SLOW_READ) { mode = FM_UNKNOWN; } return mode; } bool EspClass::flashEraseSector(uint32_t sector) { return spi_flash_erase_sector(sector) == ESP_OK; } // Warning: These functions do not work with encrypted flash bool EspClass::flashWrite(uint32_t offset, uint32_t *data, size_t size) { return spi_flash_write(offset, (uint32_t*) data, size) == ESP_OK; } bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size) { return spi_flash_read(offset, (uint32_t*) data, size) == ESP_OK; } uint64_t EspClass::getEfuseMac(void) { uint64_t _chipmacid = 0LL; esp_efuse_mac_get_default((uint8_t*) (&_chipmacid)); return _chipmacid; }