#pragma once #include "dl_lib_matrix3d.h" typedef int16_t qtp_t; /** * Matrix for input, filter, and output * @Warning: the sequence of variables is fixed, cannot be modified, otherwise there will be errors in * some handwrite xtensa instruction functions */ typedef struct { /******* fix start *******/ int w; /*!< Width */ int h; /*!< Height */ int c; /*!< Channel */ int n; /*!< Number of filter, input and output must be 1 */ int stride; /*!< Step between lines */ int exponent; /*!< Exponent for quantization */ qtp_t *item; /*!< Data */ /******* fix end *******/ } dl_matrix3dq_t; #ifndef DL_QTP_SHIFT #define DL_QTP_SHIFT 15 #define DL_ITMQ(m, x, y) m->itemq[(y) + (x)*m->stride] #define DL_QTP_RANGE ((1 << DL_QTP_SHIFT) - 1) #define DL_QTP_MAX 32767 #define DL_QTP_MIN -32768 #define DL_QTP_EXP_NA 255 //non-applicable exponent because matrix is null #define DL_SHIFT_AUTO 32 #endif /** * Implementation of matrix relative operations */ typedef enum { DL_C_IMPL = 0, /*!< ANSI C */ DL_XTENSA_IMPL = 1 /*!< Handwrite xtensa instruction */ } dl_conv_mode; /** * Configuration of mobilenet operation */ typedef struct { int stride_x; /*!< Strides of width */ int stride_y; /*!< Strides of height */ dl_padding_type padding; /*!< Padding type */ dl_conv_mode mode; /*!< Implementation mode */ int dilate_exponent; /*!< Exponent of dilation filter */ int depthwise_exponent; /*!< Exponent of depthwise filter */ int compress_exponent; /*!< Exponent of compress filter */ } dl_matrix3dq_mobilenet_config_t; // // Utility // /* * @brief Allocate a 3d quantised matrix * * @param n Number of filters, for input and output, should be 1 * @param w Width of matrix * @param h Height of matrix * @param c Channel of matrix * @param e Exponent of matrix data * @return 3d quantized matrix */ dl_matrix3dq_t *dl_matrix3dq_alloc(int n, int w, int h, int c, int e); /* * @brief Free a 3d quantized matrix * * @param m 3d quantised matrix */ void dl_matrix3dq_free(dl_matrix3dq_t *m); /** * @brief Copy a range of items from an existing matrix to a preallocated matrix * * @param dst The resulting slice matrix * @param src Old matrix to slice. * @param x X-offset of the origin of the returned matrix within the sliced matrix * @param y Y-offset of the origin of the returned matrix within the sliced matrix * @param w Width of the resulting matrix * @param h Height of the resulting matrix */ void dl_matrix3dq_slice_copy(dl_matrix3dq_t *dst, dl_matrix3dq_t *src, int x, int y, int w, int h); /** * @brief Transform a fixed point matrix to a float point matrix * * @param m Quantized matrix * @return Float point matrix */ dl_matrix3d_t *dl_matrix3d_from_matrixq(dl_matrix3dq_t *m); /** * @brief Transform a float point matrix to a fixed point matrix with pre-defined exponent * * @param m Float point matrix * @param exponent Exponent for resulting matrix * @return Fixed point matrix */ dl_matrix3dq_t *dl_matrixq_from_matrix3d_qmf(dl_matrix3d_t *m, int exponent); /** * @brief Transform a float point matrix to a fixed point matrix. The exponent is defined by the distribution of the input matrix. * * @param m Float point matrix * @return Fixed point matrix */ dl_matrix3dq_t *dl_matrixq_from_matrix3d(dl_matrix3d_t *m); qtp_t dl_matrix3dq_quant_range_exceeded_checking(int64_t value, char *location); /** * @brief Reform a quantized matrix with exponent * * @param out Preallocated resulting matrix * @param in Input matrix * @param exponent Exponent for resulting matrix */ void dl_matrix3dq_shift_exponent(dl_matrix3dq_t *out, dl_matrix3dq_t *in, int exponent); /** * @brief Do batch normalization for a quantized matrix * * @param m Input and output quantized matrix, data will be updated * @param scale Scale of batch-norm * @param offset Offset of batch-norm */ void dl_matrix3dq_batch_normalize(dl_matrix3dq_t *m, dl_matrix3dq_t *scale, dl_matrix3dq_t *offset); /** * @brief Add two quantized matrix with a pre-defined exponent * * @param in_1 Adder 1 * @param in_2 Adder 2 * @param exponent Exponent for resulting matrix * @return Result of accumulation of two matrix */ dl_matrix3dq_t *dl_matrix3dq_add(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, int exponent); // // Activation // /** * @brief Do relu for a quantized matrix * * @param in Input and output quantized matrix, data will be updated */ void dl_matrix3dq_relu(dl_matrix3dq_t *in); /** * @brief Do relu with clips for a quantized matrix * * @param in Input and output quantized matrix, data will be updated * @param clip Float point value to limit the maximum data */ void dl_matrix3dq_relu_clip(dl_matrix3dq_t *in, fptp_t clip); /** * @brief Do leaky relu for a quantized matrix * * @param in Input and output quantized matrix, data will be updated * @param alpha Float point value to multiply for those less than zero * @param clip Float point value to limit the maximum data */ void dl_matrix3dq_leaky_relu(dl_matrix3dq_t *in, fptp_t alpha, fptp_t clip); /** * @brief Do prelu for a quantized matrix * * @param in Input and output quantized matrix, data will be updated * @param alpha Quantized matrix to multiply for those less than zero */ void dl_matrix3dq_p_relu(dl_matrix3dq_t *in, dl_matrix3dq_t *alpha); // // Concat // /** * @brief Concatenate two quantized matrix in channel * * @param in_1 Quantized matrix to be concatenated * @param in_2 Quantized matrix to be concatenated * @return Quantized matrix with the same width and height of in_1 and in_2, and with the sum of channel number of in_1 and in_2 */ dl_matrix3dq_t *dl_matrix3dq_concat(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2); /** * @brief Concatenate four quantized matrix in channel * * @param in_1 Quantized matrix to be concatenated * @param in_2 Quantized matrix to be concatenated * @param in_3 Quantized matrix to be concatenated * @param in_4 Quantized matrix to be concatenated * @return Quantized matrix with the same width and height of all inputs, and with the sum of channel number of all inputs */ dl_matrix3dq_t *dl_matrix3dq_concat_4(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, dl_matrix3dq_t *in_3, dl_matrix3dq_t *in_4); /** * @brief Concatenate four quantized matrix in channel * * @param in_1 Quantized matrix to be concatenated * @param in_2 Quantized matrix to be concatenated * @param in_3 Quantized matrix to be concatenated * @param in_4 Quantized matrix to be concatenated * @param in_5 Quantized matrix to be concatenated * @param in_6 Quantized matrix to be concatenated * @param in_7 Quantized matrix to be concatenated * @param in_8 Quantized matrix to be concatenated * @return Quantized matrix with the same width and height of all inputs, and with the sum of channel number of all inputs */ dl_matrix3dq_t *dl_matrix3dq_concat_8(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, dl_matrix3dq_t *in_3, dl_matrix3dq_t *in_4, dl_matrix3dq_t *in_5, dl_matrix3dq_t *in_6, dl_matrix3dq_t *in_7, dl_matrix3dq_t *in_8); // // Conv 1x1 // /** * @brief Do 1x1 convolution with a quantized matrix * * @param out Preallocated quantized matrix, size (1, w, h, n) * @param in Input matrix, size (1, w, h, c) * @param filter 1x1 filter, size (n, 1, 1, c) * @param mode Implementation mode */ void dl_matrix3dqq_conv_1x1(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_conv_mode mode); /** * @brief Do 1x1 convolution with a quantized matrix, with relu activation * * @param out Preallocated quantized matrix, size (1, w, h, n) * @param in Input matrix, size (1, w, h, c) * @param filter 1x1 filter, size (n, 1, 1, c) * @param mode Implementation mode */ void dl_matrix3dqq_conv_1x1_with_relu(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_conv_mode mode); /** * @brief Do 1x1 convolution with a quantized matrix, with bias adding * * @param out Preallocated quantized matrix, size (1, w, h, n) * @param in Input matrix, size (1, w, h, c) * @param filter 1x1 filter, size (n, 1, 1, c) * @param bias Bias, size (1, 1, 1, n) * @param mode Implementation mode * @param name Layer name to debug */ void dl_matrix3dqq_conv_1x1_with_bias(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, dl_conv_mode mode, char *name); /** * @brief Do 1x1 convolution with a quantized matrix, with bias adding and relu activation * * @param out Preallocated quantized matrix, size (1, w, h, n) * @param in Input matrix, size (1, w, h, c) * @param filter 1x1 filter, size (n, 1, 1, c) * @param bias Bias, size (1, 1, 1, n) * @param mode Implementation mode */ void dl_matrix3dqq_conv_1x1_with_bias_relu(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, dl_conv_mode mode); void dl_matrix3dqq_conv_1x1_with_prelu(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *prelu, dl_conv_mode mode); /** * @brief Do 1x1 convolution with an 8-bit fixed point matrix * * @param out Preallocated quantized matrix, size (1, w, h, n) * @param in Input matrix, size (1, w, h, c) * @param filter 1x1 filter, size (n, 1, 1, c) * @param mode Implementation mode */ void dl_matrix3duq_conv_1x1(dl_matrix3dq_t *out, dl_matrix3du_t *in, dl_matrix3dq_t *filter, dl_conv_mode mode); /** * @brief Do 1x1 convolution with an 8-bit fixed point matrix, with bias adding * * @param out Preallocated quantized matrix, size (1, w, h, n) * @param in Input matrix, size (1, w, h, c) * @param filter 1x1 filter, size (n, 1, 1, c) * @param bias Bias, size (1, 1, 1, n) * @param mode Implementation mode */ void dl_matrix3duq_conv_1x1_with_bias(dl_matrix3dq_t *out, dl_matrix3du_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, dl_conv_mode mode); // // Conv 3x3 // /** * @brief Do 3x3 convolution basic operation with a quantized matrix * * @param out Preallocated quantized matrix * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (n, 3, 3, c) * @param stride_x Stride of width * @param stride_y Stride of height */ void dl_matrix3dqq_conv_3x3_op(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y); /** * @brief Do 3x3 convolution with a quantized matrix * * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (n, 3, 3, c) * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param exponent Exponent for resulting matrix * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_conv_3x3(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent); /** * @brief Do 3x3 convolution with a quantized matrix, with bias adding * * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (n, 3, 3, c) * @param bias Bias, size (1, 1, 1, n) * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param exponent Exponent for resulting matrix * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias(dl_matrix3dq_t *in, dl_matrix3dq_t *f, dl_matrix3dq_t *bias, int stride_x, int stride_y, dl_padding_type padding, int exponent, int relu); dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias(dl_matrix3du_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, int stride_x, int stride_y, dl_padding_type padding, int exponent, char *name); dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias_prelu(dl_matrix3du_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, dl_matrix3dq_t *prelu, int stride_x, int stride_y, dl_padding_type padding, int exponent, char *name); // // Conv common // /** * @brief Do a general convolution layer pass, size is (number, width, height, channel) * * @param in Input image * @param filter Weights of the neurons * @param bias Bias for the CNN layer. * @param stride_x The step length of the convolution window in x(width) direction * @param stride_y The step length of the convolution window in y(height) direction * @param padding One of VALID or SAME * @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect. * If ESP_PLATFORM is not defined, this value is not used. * @return The result of CNN layer. */ dl_matrix3dq_t *dl_matrix3dqq_conv_common(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, int stride_x, int stride_y, dl_padding_type padding, int exponent, dl_conv_mode mode); /** * @brief Do a general convolution layer pass for an 8-bit fixed point matrix, size is (number, width, height, channel) * * @param in Input image * @param filter Weights of the neurons * @param bias Bias for the CNN layer. * @param stride_x The step length of the convolution window in x(width) direction * @param stride_y The step length of the convolution window in y(height) direction * @param padding One of VALID or SAME * @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect. * If ESP_PLATFORM is not defined, this value is not used. * @return The result of CNN layer. */ dl_matrix3dq_t *dl_matrix3duq_conv_common(dl_matrix3du_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, int stride_x, int stride_y, dl_padding_type padding, int exponent, dl_conv_mode mode); // // Depthwise 3x3 // /** * @brief Do 3x3 depthwise convolution with an 8-bit fixed point matrix * * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (1, 3, 3, c) * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param exponent Exponent for resulting matrix * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3duq_depthwise_conv_3x3(dl_matrix3du_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent); /** * @brief Do 3x3 depthwise convolution with a quantized matrix * * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (1, 3, 3, c) * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param exponent Exponent for resulting matrix * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent); #if CONFIG_DEVELOPING_CODE dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_2(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent); dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_3(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent); #endif /** * @brief Do 3x3 depthwise convolution with a quantized matrix, with bias adding * * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (1, 3, 3, c) * @param bias Bias, size (1, 1, 1, c) * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param exponent Exponent for resulting matrix * @param relu Whether to use relu activation * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias(dl_matrix3dq_t *in, dl_matrix3dq_t *f, dl_matrix3dq_t *bias, int stride_x, int stride_y, dl_padding_type padding, int exponent, int relu); /** * @brief Do 3x3 depthwise convolution with a quantized matrix, with bias adding and stride 1 * * @param in Input matrix, size (1, w, h, c) * @param filter 3x3 filter, size (1, 3, 3, c) * @param bias Bias, size (1, 1, 1, n) * @param padding Padding type, 0: valid, 1: same * @param exponent Exponent for resulting matrix * @param relu Whether to use relu activation * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3s1_with_bias(dl_matrix3dq_t *in, dl_matrix3dq_t *f, dl_matrix3dq_t *bias, dl_padding_type padding, int exponent, int relu); dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_prelu(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *prelu, int stride_x, int stride_y, dl_padding_type padding, int exponent); // // Depthwise Common // #if CONFIG_DEVELOPING_CODE dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_common(dl_matrix3dq_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent, dl_conv_mode mode); dl_matrix3dq_t *dl_matrix3duq_depthwise_conv_common(dl_matrix3du_t *in, dl_matrix3dq_t *filter, int stride_x, int stride_y, dl_padding_type padding, int exponent, dl_conv_mode mode); #endif // // Dot Product // void dl_matrix3dqq_dot_product(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_conv_mode mode); // // FC // /** * @brief Do fully connected layer forward. * * @param out Preallocated resulting matrix, size (1, 1, 1, h) * @param in Input matrix, size (1, 1, 1, w) * @param filter Filter matrix, size (1, w, h, 1) * @param mode Implementation mode */ void dl_matrix3dqq_fc(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_conv_mode mode); /** * @brief Do fully connected layer forward, with bias adding * * @param out Preallocated resulting matrix, size (1, 1, 1, h) * @param in Input matrix, size (1, 1, 1, w) * @param filter Filter matrix, size (1, w, h, 1) * @param bias Bias matrix, size (1, 1, 1, h) * @param mode Implementation mode */ void dl_matrix3dqq_fc_with_bias(dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, dl_conv_mode mode, char *name); // // Mobilefaceblock // /** * @brief Do mobilefacenet process with splited pointwise 1x1 convolution, the process sequence is 1x1 pointwise->bn->relu->3x3 depthwise->bn->relu->1x1 pointwise->bn * * @param in Input matrix, size (1, w, h, c) * @param pw_1 Pointwise 1x1 filter, size (n1/2, 1, 1, c) * @param pw_2 Pointwise 1x1 filter, size (n1/2, 1, 1, c) * @param pw_bias Pointwise bias, size (1, 1, 1, n1) * @param dw Depthwise 3x3 filter, size (1, 3, 3, n1) * @param dw_bias Depthwise bias, size (1, 1, 1, n1) * @param pw_linear_1 Pointwise 1x1 filter, size (n2/2, 1, 1, n1) * @param pw_linear_2 Pointwise 1x1 filter, size (n2/2, 1, 1, n1) * @param pw_linear_bias Pointwise bias, size (1, 1, 1, n2) * @param pw_exponent Exponent for pointwise resulting matrix * @param dw_exponent Exponent for depthwise resulting matrix * @param pw_linear_exponent Exponent for pointwise resulting matrix * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param mode Implementation mode * @param shortcut Whether has a shortcut at pointwise linear * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock_split(dl_matrix3dq_t *in, dl_matrix3dq_t *pw_1, dl_matrix3dq_t *pw_2, dl_matrix3dq_t *pw_bias, dl_matrix3dq_t *dw, dl_matrix3dq_t *dw_bias, dl_matrix3dq_t *pw_linear_1, dl_matrix3dq_t *pw_linear_2, dl_matrix3dq_t *pw_linear_bias, int pw_exponent, int dw_exponent, int pw_linear_exponent, int stride_x, int stride_y, dl_padding_type padding, dl_conv_mode mode, int shortcut); /** * @brief Do mobilefacenet process, the process sequence is 1x1 pointwise->bn->relu->3x3 depthwise->bn->relu->1x1 pointwise->bn * * @param in Input matrix, size (1, w, h, c) * @param pw Pointwise 1x1 filter, size (n1, 1, 1, c) * @param pw_bias Pointwise bias, size (1, 1, 1, n1) * @param dw Depthwise 3x3 filter, size (1, 3, 3, n1) * @param dw_bias Depthwise bias, size (1, 1, 1, n1) * @param pw_linear Pointwise 1x1 filter, size (n2, 1, 1, n1) * @param pw_linear_bias Pointwise bias, size (1, 1, 1, n2) * @param pw_exponent Exponent for pointwise resulting matrix * @param dw_exponent Exponent for depthwise resulting matrix * @param pw_linear_exponent Exponent for pointwise resulting matrix * @param stride_x Stride of width * @param stride_y Stride of height * @param padding Padding type, 0: valid, 1: same * @param mode Implementation mode * @param shortcut Whether has a shortcut at pointwise linear * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock(dl_matrix3dq_t *in, dl_matrix3dq_t *pw, dl_matrix3dq_t *pw_bias, dl_matrix3dq_t *dw, dl_matrix3dq_t *dw_bias, dl_matrix3dq_t *pw_linear, dl_matrix3dq_t *pw_linear_bias, int pw_exponent, int dw_exponent, int pw_linear_exponent, int stride_x, int stride_y, dl_padding_type padding, dl_conv_mode mode, int shortcut); // // Mobilenet // /** * @brief Do mobilenet process, the process sequence is 1x1 dilated->prelu->3x3 depthwise->prelu->1x1 compress->bias * * @param in Input matrix, size (1, w, h, c) * @param dilate Pointwise 1x1 filter, size (n1, 1, 1, c) * @param dilate_prelu Pointwise prelu, size (1, 1, 1, n1) * @param depthwise Depthwise 3x3 filter, size (1, 3, 3, n1) * @param depthwise_prelu Depthwise prelu, size (1, 1, 1, n1) * @param compress Pointwise 1x1 filter, size (n2, 1, 1, n1) * @param bias Pointwise bias, size (1, 1, 1, n2) * @param config Mobilenet configuration * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3dqq_mobilenet(dl_matrix3dq_t *in, dl_matrix3dq_t *dilate, dl_matrix3dq_t *dilate_prelu, dl_matrix3dq_t *depthwise, dl_matrix3dq_t *depth_prelu, dl_matrix3dq_t *compress, dl_matrix3dq_t *bias, dl_matrix3dq_mobilenet_config_t config, char *name); /** * @brief Do mobilenet process, the process sequence is 1x1 dilated->prelu->3x3 depthwise->prelu->1x1 compress->bias * * @param in Input matrix, 8-bit fixed point, size (1, w, h, c) * @param dilate Pointwise 1x1 filter, size (n1, 1, 1, c) * @param dilate_prelu Pointwise prelu, size (1, 1, 1, n1) * @param depthwise Depthwise 3x3 filter, size (1, 3, 3, n1) * @param depthwise_prelu Depthwise prelu, size (1, 1, 1, n1) * @param compress Pointwise 1x1 filter, size (n2, 1, 1, n1) * @param bias Pointwise bias, size (1, 1, 1, n2) * @param config Mobilenet configuration * @return Resulting quantized matrix */ dl_matrix3dq_t *dl_matrix3duq_mobilenet(dl_matrix3du_t *in, dl_matrix3dq_t *dilate, dl_matrix3dq_t *dilate_prelu, dl_matrix3dq_t *depthwise, dl_matrix3dq_t *depth_prelu, dl_matrix3dq_t *compress, dl_matrix3dq_t *bias, dl_matrix3dq_mobilenet_config_t config, char *name); // // Padding // dl_error_type dl_matrix3dqq_padding(dl_matrix3dq_t **padded_in, dl_matrix3dq_t **out, dl_matrix3dq_t *in, int out_c, int stride_x, int stride_y, int padding, int exponent); dl_error_type dl_matrix3duq_padding(dl_matrix3du_t **padded_in, dl_matrix3dq_t **out, dl_matrix3du_t *in, int out_c, int stride_x, int stride_y, int padding, int exponent); // // Pooling // /** * @brief Calculate average value of a feature map * * @param in Input matrix, size (1, w, h, c) * @return Resulting matrix, size (1, 1, 1, c) */ dl_matrix3dq_t *dl_matrix3dq_global_pool(dl_matrix3dq_t *in);