// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "esp32-hal-uart.h" #include "esp32-hal.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "rom/ets_sys.h" #include "esp_attr.h" #include "esp_intr.h" #include "rom/uart.h" #include "soc/uart_reg.h" #include "soc/uart_struct.h" #include "soc/io_mux_reg.h" #include "soc/gpio_sig_map.h" #include "soc/dport_reg.h" #include "soc/rtc.h" #include "esp_intr_alloc.h" #define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:( (u==2)?DR_REG_UART2_BASE:0))) #define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:( (u==2)?U2RXD_IN_IDX:0))) #define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:( (u==2)?U2TXD_OUT_IDX:0))) #define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:((u==2)?ETS_UART2_INTR_SOURCE:0))) static int s_uart_debug_nr = 0; struct uart_struct_t { uart_dev_t * dev; #if !CONFIG_DISABLE_HAL_LOCKS xSemaphoreHandle lock; #endif uint8_t num; xQueueHandle queue; intr_handle_t intr_handle; }; #if CONFIG_DISABLE_HAL_LOCKS #define UART_MUTEX_LOCK() #define UART_MUTEX_UNLOCK() static uart_t _uart_bus_array[3] = { {(volatile uart_dev_t *)(DR_REG_UART_BASE), 0, NULL, NULL}, {(volatile uart_dev_t *)(DR_REG_UART1_BASE), 1, NULL, NULL}, {(volatile uart_dev_t *)(DR_REG_UART2_BASE), 2, NULL, NULL} }; #else #define UART_MUTEX_LOCK() do {} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS) #define UART_MUTEX_UNLOCK() xSemaphoreGive(uart->lock) static uart_t _uart_bus_array[3] = { {(volatile uart_dev_t *)(DR_REG_UART_BASE), NULL, 0, NULL, NULL}, {(volatile uart_dev_t *)(DR_REG_UART1_BASE), NULL, 1, NULL, NULL}, {(volatile uart_dev_t *)(DR_REG_UART2_BASE), NULL, 2, NULL, NULL} }; #endif static void uart_on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb); static void IRAM_ATTR _uart_isr(void *arg) { uint8_t i, c; BaseType_t xHigherPriorityTaskWoken; uart_t* uart; for(i=0;i<3;i++){ uart = &_uart_bus_array[i]; if(uart->intr_handle == NULL){ continue; } uart->dev->int_clr.rxfifo_full = 1; uart->dev->int_clr.frm_err = 1; uart->dev->int_clr.rxfifo_tout = 1; while(uart->dev->status.rxfifo_cnt || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) { c = uart->dev->fifo.rw_byte; if(uart->queue != NULL) { xQueueSendFromISR(uart->queue, &c, &xHigherPriorityTaskWoken); } } } if (xHigherPriorityTaskWoken) { portYIELD_FROM_ISR(); } } void uartEnableInterrupt(uart_t* uart) { UART_MUTEX_LOCK(); uart->dev->conf1.rxfifo_full_thrhd = 112; uart->dev->conf1.rx_tout_thrhd = 2; uart->dev->conf1.rx_tout_en = 1; uart->dev->int_ena.rxfifo_full = 1; uart->dev->int_ena.frm_err = 1; uart->dev->int_ena.rxfifo_tout = 1; uart->dev->int_clr.val = 0xffffffff; esp_intr_alloc(UART_INTR_SOURCE(uart->num), (int)ESP_INTR_FLAG_IRAM, _uart_isr, NULL, &uart->intr_handle); UART_MUTEX_UNLOCK(); } void uartDisableInterrupt(uart_t* uart) { UART_MUTEX_LOCK(); uart->dev->conf1.val = 0; uart->dev->int_ena.val = 0; uart->dev->int_clr.val = 0xffffffff; esp_intr_free(uart->intr_handle); uart->intr_handle = NULL; UART_MUTEX_UNLOCK(); } void uartDetachRx(uart_t* uart) { if(uart == NULL) { return; } pinMatrixInDetach(UART_RXD_IDX(uart->num), false, false); uartDisableInterrupt(uart); } void uartDetachTx(uart_t* uart) { if(uart == NULL) { return; } pinMatrixOutDetach(UART_TXD_IDX(uart->num), false, false); } void uartAttachRx(uart_t* uart, uint8_t rxPin, bool inverted) { if(uart == NULL || rxPin > 39) { return; } pinMode(rxPin, INPUT); pinMatrixInAttach(rxPin, UART_RXD_IDX(uart->num), inverted); uartEnableInterrupt(uart); } void uartAttachTx(uart_t* uart, uint8_t txPin, bool inverted) { if(uart == NULL || txPin > 39) { return; } pinMode(txPin, OUTPUT); pinMatrixOutAttach(txPin, UART_TXD_IDX(uart->num), inverted, false); } uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted) { if(uart_nr > 2) { return NULL; } if(rxPin == -1 && txPin == -1) { return NULL; } uart_t* uart = &_uart_bus_array[uart_nr]; #if !CONFIG_DISABLE_HAL_LOCKS if(uart->lock == NULL) { uart->lock = xSemaphoreCreateMutex(); if(uart->lock == NULL) { return NULL; } } #endif if(queueLen && uart->queue == NULL) { uart->queue = xQueueCreate(queueLen, sizeof(uint8_t)); //initialize the queue if(uart->queue == NULL) { return NULL; } } if(uart_nr == 1){ DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART1_CLK_EN); DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART1_RST); } else if(uart_nr == 2){ DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART2_CLK_EN); DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART2_RST); } else { DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART_CLK_EN); DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART_RST); } uartFlush(uart); uartSetBaudRate(uart, baudrate); UART_MUTEX_LOCK(); uart->dev->conf0.val = config; #define TWO_STOP_BITS_CONF 0x3 #define ONE_STOP_BITS_CONF 0x1 if ( uart->dev->conf0.stop_bit_num == TWO_STOP_BITS_CONF) { uart->dev->conf0.stop_bit_num = ONE_STOP_BITS_CONF; uart->dev->rs485_conf.dl1_en = 1; } // tx_idle_num : idle interval after tx FIFO is empty(unit: the time it takes to send one bit under current baudrate) // Setting it to 0 prevents line idle time/delays when sending messages with small intervals uart->dev->idle_conf.tx_idle_num = 0; // UART_MUTEX_UNLOCK(); if(rxPin != -1) { uartAttachRx(uart, rxPin, inverted); } if(txPin != -1) { uartAttachTx(uart, txPin, inverted); } addApbChangeCallback(uart, uart_on_apb_change); return uart; } void uartEnd(uart_t* uart) { if(uart == NULL) { return; } removeApbChangeCallback(uart, uart_on_apb_change); UART_MUTEX_LOCK(); if(uart->queue != NULL) { vQueueDelete(uart->queue); uart->queue = NULL; } uart->dev->conf0.val = 0; UART_MUTEX_UNLOCK(); uartDetachRx(uart); uartDetachTx(uart); } size_t uartResizeRxBuffer(uart_t * uart, size_t new_size) { if(uart == NULL) { return 0; } UART_MUTEX_LOCK(); if(uart->queue != NULL) { vQueueDelete(uart->queue); uart->queue = xQueueCreate(new_size, sizeof(uint8_t)); if(uart->queue == NULL) { UART_MUTEX_UNLOCK(); return NULL; } } UART_MUTEX_UNLOCK(); return new_size; } uint32_t uartAvailable(uart_t* uart) { if(uart == NULL || uart->queue == NULL) { return 0; } return (uxQueueMessagesWaiting(uart->queue) + uart->dev->status.rxfifo_cnt) ; } uint32_t uartAvailableForWrite(uart_t* uart) { if(uart == NULL) { return 0; } return 0x7f - uart->dev->status.txfifo_cnt; } void uartRxFifoToQueue(uart_t* uart) { uint8_t c; UART_MUTEX_LOCK(); //disable interrupts uart->dev->int_ena.val = 0; uart->dev->int_clr.val = 0xffffffff; while (uart->dev->status.rxfifo_cnt || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) { c = uart->dev->fifo.rw_byte; xQueueSend(uart->queue, &c, 0); } //enable interrupts uart->dev->int_ena.rxfifo_full = 1; uart->dev->int_ena.frm_err = 1; uart->dev->int_ena.rxfifo_tout = 1; uart->dev->int_clr.val = 0xffffffff; UART_MUTEX_UNLOCK(); } uint8_t uartRead(uart_t* uart) { if(uart == NULL || uart->queue == NULL) { return 0; } uint8_t c; if ((uxQueueMessagesWaiting(uart->queue) == 0) && (uart->dev->status.rxfifo_cnt > 0)) { uartRxFifoToQueue(uart); } if(xQueueReceive(uart->queue, &c, 0)) { return c; } return 0; } uint8_t uartPeek(uart_t* uart) { if(uart == NULL || uart->queue == NULL) { return 0; } uint8_t c; if ((uxQueueMessagesWaiting(uart->queue) == 0) && (uart->dev->status.rxfifo_cnt > 0)) { uartRxFifoToQueue(uart); } if(xQueuePeek(uart->queue, &c, 0)) { return c; } return 0; } void uartWrite(uart_t* uart, uint8_t c) { if(uart == NULL) { return; } UART_MUTEX_LOCK(); while(uart->dev->status.txfifo_cnt == 0x7F); uart->dev->fifo.rw_byte = c; UART_MUTEX_UNLOCK(); } void uartWriteBuf(uart_t* uart, const uint8_t * data, size_t len) { if(uart == NULL) { return; } UART_MUTEX_LOCK(); while(len) { while(uart->dev->status.txfifo_cnt == 0x7F); uart->dev->fifo.rw_byte = *data++; len--; } UART_MUTEX_UNLOCK(); } void uartFlush(uart_t* uart) { uartFlushTxOnly(uart,false); } void uartFlushTxOnly(uart_t* uart, bool txOnly) { if(uart == NULL) { return; } UART_MUTEX_LOCK(); while(uart->dev->status.txfifo_cnt || uart->dev->status.st_utx_out); if( !txOnly ){ //Due to hardware issue, we can not use fifo_rst to reset uart fifo. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <> v2.6 or later. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`. while(uart->dev->status.rxfifo_cnt != 0 || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) { READ_PERI_REG(UART_FIFO_REG(uart->num)); } xQueueReset(uart->queue); } UART_MUTEX_UNLOCK(); } void uartSetBaudRate(uart_t* uart, uint32_t baud_rate) { if(uart == NULL) { return; } UART_MUTEX_LOCK(); uint32_t clk_div = ((getApbFrequency()<<4)/baud_rate); uart->dev->clk_div.div_int = clk_div>>4 ; uart->dev->clk_div.div_frag = clk_div & 0xf; UART_MUTEX_UNLOCK(); } static void uart_on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb) { uart_t* uart = (uart_t*)arg; if(ev_type == APB_BEFORE_CHANGE){ UART_MUTEX_LOCK(); //disabple interrupt uart->dev->int_ena.val = 0; uart->dev->int_clr.val = 0xffffffff; // read RX fifo uint8_t c; // BaseType_t xHigherPriorityTaskWoken; while(uart->dev->status.rxfifo_cnt != 0 || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) { c = uart->dev->fifo.rw_byte; if(uart->queue != NULL ) { xQueueSend(uart->queue, &c, 1); //&xHigherPriorityTaskWoken); } } UART_MUTEX_UNLOCK(); // wait TX empty while(uart->dev->status.txfifo_cnt || uart->dev->status.st_utx_out); } else { //todo: // set baudrate UART_MUTEX_LOCK(); uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F); uint32_t baud_rate = ((old_apb<<4)/clk_div); clk_div = ((new_apb<<4)/baud_rate); uart->dev->clk_div.div_int = clk_div>>4 ; uart->dev->clk_div.div_frag = clk_div & 0xf; //enable interrupts uart->dev->int_ena.rxfifo_full = 1; uart->dev->int_ena.frm_err = 1; uart->dev->int_ena.rxfifo_tout = 1; uart->dev->int_clr.val = 0xffffffff; UART_MUTEX_UNLOCK(); } } uint32_t uartGetBaudRate(uart_t* uart) { if(uart == NULL) { return 0; } uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F); if(!clk_div) { return 0; } return ((getApbFrequency()<<4)/clk_div); } static void IRAM_ATTR uart0_write_char(char c) { while(((ESP_REG(0x01C+DR_REG_UART_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F); ESP_REG(DR_REG_UART_BASE) = c; } static void IRAM_ATTR uart1_write_char(char c) { while(((ESP_REG(0x01C+DR_REG_UART1_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F); ESP_REG(DR_REG_UART1_BASE) = c; } static void IRAM_ATTR uart2_write_char(char c) { while(((ESP_REG(0x01C+DR_REG_UART2_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F); ESP_REG(DR_REG_UART2_BASE) = c; } void uart_install_putc() { switch(s_uart_debug_nr) { case 0: ets_install_putc1((void (*)(char)) &uart0_write_char); break; case 1: ets_install_putc1((void (*)(char)) &uart1_write_char); break; case 2: ets_install_putc1((void (*)(char)) &uart2_write_char); break; default: ets_install_putc1(NULL); break; } } void uartSetDebug(uart_t* uart) { if(uart == NULL || uart->num > 2) { s_uart_debug_nr = -1; //ets_install_putc1(NULL); //return; } else if(s_uart_debug_nr == uart->num) { return; } else s_uart_debug_nr = uart->num; uart_install_putc(); } int uartGetDebug() { return s_uart_debug_nr; } int log_printf(const char *format, ...) { if(s_uart_debug_nr < 0){ return 0; } static char loc_buf[64]; char * temp = loc_buf; int len; va_list arg; va_list copy; va_start(arg, format); va_copy(copy, arg); len = vsnprintf(NULL, 0, format, arg); va_end(copy); if(len >= sizeof(loc_buf)){ temp = (char*)malloc(len+1); if(temp == NULL) { return 0; } } vsnprintf(temp, len+1, format, arg); #if !CONFIG_DISABLE_HAL_LOCKS if(_uart_bus_array[s_uart_debug_nr].lock){ xSemaphoreTake(_uart_bus_array[s_uart_debug_nr].lock, portMAX_DELAY); ets_printf("%s", temp); xSemaphoreGive(_uart_bus_array[s_uart_debug_nr].lock); } else { ets_printf("%s", temp); } #else ets_printf("%s", temp); #endif va_end(arg); if(len >= sizeof(loc_buf)){ free(temp); } return len; } /* * if enough pulses are detected return the minimum high pulse duration + minimum low pulse duration divided by two. * This equals one bit period. If flag is true the function return inmediately, otherwise it waits for enough pulses. */ unsigned long uartBaudrateDetect(uart_t *uart, bool flg) { while(uart->dev->rxd_cnt.edge_cnt < 30) { // UART_PULSE_NUM(uart_num) if(flg) return 0; ets_delay_us(1000); } UART_MUTEX_LOCK(); unsigned long ret = ((uart->dev->lowpulse.min_cnt + uart->dev->highpulse.min_cnt) >> 1) + 12; UART_MUTEX_UNLOCK(); return ret; } /* * To start detection of baud rate with the uart the auto_baud.en bit needs to be cleared and set. The bit period is * detected calling uartBadrateDetect(). The raw baudrate is computed using the UART_CLK_FREQ. The raw baudrate is * rounded to the closed real baudrate. */ void uartStartDetectBaudrate(uart_t *uart) { if(!uart) return; uart->dev->auto_baud.glitch_filt = 0x08; uart->dev->auto_baud.en = 0; uart->dev->auto_baud.en = 1; } unsigned long uartDetectBaudrate(uart_t *uart) { static bool uartStateDetectingBaudrate = false; if(!uartStateDetectingBaudrate) { uart->dev->auto_baud.glitch_filt = 0x08; uart->dev->auto_baud.en = 0; uart->dev->auto_baud.en = 1; uartStateDetectingBaudrate = true; } unsigned long divisor = uartBaudrateDetect(uart, true); if (!divisor) { return 0; } uart->dev->auto_baud.en = 0; uartStateDetectingBaudrate = false; // Initialize for the next round unsigned long baudrate = getApbFrequency() / divisor; static const unsigned long default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400}; size_t i; for (i = 1; i < sizeof(default_rates) / sizeof(default_rates[0]) - 1; i++) // find the nearest real baudrate { if (baudrate <= default_rates[i]) { if (baudrate - default_rates[i - 1] < default_rates[i] - baudrate) { i--; } break; } } return default_rates[i]; } /* * Returns the status of the RX state machine, if the value is non-zero the state machine is active. */ bool uartRxActive(uart_t* uart) { return uart->dev->status.st_urx_out != 0; }