arduino-esp32/cores/esp32/esp32-hal-uart.c
me-no-dev 17c8ceb1b9 UART rework
many possible problems fixed in preparation for thread-safe
2016-10-14 03:02:40 +03:00

336 lines
8.1 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-uart.h"
#include "esp32-hal.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "rom/ets_sys.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "rom/uart.h"
#include "soc/uart_reg.h"
#include "soc/uart_struct.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#define ETS_UART_INUM 5
#define ETS_UART2_INUM ETS_UART_INUM
#define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:( (u==2)?DR_REG_UART2_BASE:0)))
#define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:( (u==2)?U2RXD_IN_IDX:0)))
#define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:( (u==2)?U2TXD_OUT_IDX:0)))
#define UART_INUM(u) ((u==0)?ETS_UART0_INUM:( (u==1)?ETS_UART1_INUM:( (u==2)?ETS_UART2_INUM:0)))
#define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:((u==2)?ETS_UART2_INTR_SOURCE:0)))
static int s_uart_debug_nr = 0;
struct uart_struct_t {
uart_dev_t * dev;
uint8_t num;
xQueueHandle queue;
};
static uart_t _uart_bus_array[3] = {
{(volatile uart_dev_t *)(DR_REG_UART_BASE), 0, NULL},
{(volatile uart_dev_t *)(DR_REG_UART1_BASE), 1, NULL},
{(volatile uart_dev_t *)(DR_REG_UART2_BASE), 2, NULL}
};
static void IRAM_ATTR _uart_isr(void *arg)
{
uint8_t i, c;
BaseType_t xHigherPriorityTaskWoken;
uart_t* uart;
for(i=0;i<3;i++){
uart = &_uart_bus_array[i];
uart->dev->int_clr.rxfifo_full = 1;
uart->dev->int_clr.frm_err = 1;
uart->dev->int_clr.rxfifo_tout = 1;
while(uart->dev->status.rxfifo_cnt) {
c = uart->dev->fifo.rw_byte;
if(uart->queue != NULL && !xQueueIsQueueFullFromISR(uart->queue)) {
xQueueSendFromISR(uart->queue, &c, &xHigherPriorityTaskWoken);
}
}
}
if (xHigherPriorityTaskWoken) {
portYIELD_FROM_ISR();
}
}
void uartEnableGlobalInterrupt()
{
xt_set_interrupt_handler(ETS_UART_INUM, _uart_isr, NULL);
ESP_INTR_ENABLE(ETS_UART_INUM);
}
void uartDisableGlobalInterrupt()
{
ESP_INTR_DISABLE(ETS_UART_INUM);
xt_set_interrupt_handler(ETS_UART_INUM, NULL, NULL);
}
void uartEnableInterrupt(uart_t* uart)
{
uart->dev->conf1.rxfifo_full_thrhd = 112;
uart->dev->conf1.rx_tout_thrhd = 2;
uart->dev->conf1.rx_tout_en = 1;
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
intr_matrix_set(xPortGetCoreID(), UART_INTR_SOURCE(uart->num), ETS_UART_INUM);
}
void uartDisableInterrupt(uart_t* uart)
{
uart->dev->conf1.val = 0;
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
}
void uartDetachRx(uart_t* uart)
{
if(uart == NULL) {
return;
}
pinMatrixInDetach(UART_RXD_IDX(uart->num), false, false);
uartDisableInterrupt(uart);
}
void uartDetachTx(uart_t* uart)
{
if(uart == NULL) {
return;
}
pinMatrixOutDetach(UART_TXD_IDX(uart->num), false, false);
}
void uartAttachRx(uart_t* uart, uint8_t rxPin, bool inverted)
{
if(uart == NULL || rxPin > 39) {
return;
}
pinMode(rxPin, INPUT);
pinMatrixInAttach(rxPin, UART_RXD_IDX(uart->num), inverted);
uartEnableInterrupt(uart);
uartEnableGlobalInterrupt();
}
void uartAttachTx(uart_t* uart, uint8_t txPin, bool inverted)
{
if(uart == NULL || txPin > 39) {
return;
}
pinMode(txPin, OUTPUT);
pinMatrixOutAttach(txPin, UART_TXD_IDX(uart->num), inverted, false);
}
uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted)
{
if(uart_nr > 2) {
return NULL;
}
if(rxPin == -1 && txPin == -1) {
return NULL;
}
uart_t* uart = &_uart_bus_array[uart_nr];
if(queueLen && uart->queue == NULL) {
uart->queue = xQueueCreate(queueLen, sizeof(uint8_t)); //initialize the queue
if(uart->queue == NULL) {
return NULL;
}
}
uartFlush(uart);
uartSetBaudRate(uart, baudrate);
uart->dev->conf0.val = config;
if(rxPin != -1) {
uartAttachRx(uart, rxPin, inverted);
}
if(txPin != -1) {
uartAttachTx(uart, txPin, inverted);
}
return uart;
}
void uartEnd(uart_t* uart)
{
if(uart == NULL) {
return;
}
if(uart->queue != NULL) {
vQueueDelete(uart->queue);
}
uartDetachRx(uart);
uartDetachTx(uart);
uart->dev->conf0.val = 0;
}
uint32_t uartAvailable(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
return uxQueueMessagesWaiting(uart->queue);
}
uint8_t uartRead(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
uint8_t c;
if(xQueueReceive(uart->queue, &c, 0)) {
return c;
}
return 0;
}
uint8_t uartPeek(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
uint8_t c;
if(xQueuePeek(uart->queue, &c, 0)) {
return c;
}
return 0;
}
void uartWrite(uart_t* uart, uint8_t c)
{
if(uart == NULL) {
return;
}
while(uart->dev->status.rxfifo_cnt == 0x7F);
uart->dev->fifo.rw_byte = c;
}
void uartWriteBuf(uart_t* uart, const uint8_t * data, size_t len)
{
if(uart == NULL) {
return;
}
while(len) {
while(len && uart->dev->status.rxfifo_cnt < 0x7F) {
uart->dev->fifo.rw_byte = *data++;
len--;
}
}
}
void uartFlush(uart_t* uart)
{
if(uart == NULL) {
return;
}
while(uart->dev->status.txfifo_cnt);
uart->dev->conf0.txfifo_rst = 1;
uart->dev->conf0.txfifo_rst = 0;
uart->dev->conf0.rxfifo_rst = 1;
uart->dev->conf0.rxfifo_rst = 0;
}
void uartSetBaudRate(uart_t* uart, uint32_t baud_rate)
{
if(uart == NULL) {
return;
}
uint32_t clk_div = ((UART_CLK_FREQ<<4)/baud_rate);
uart->dev->clk_div.div_int = clk_div>>4 ;
uart->dev->clk_div.div_frag = clk_div & 0xf;
}
uint32_t uartGetBaudRate(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F);
return ((UART_CLK_FREQ<<4)/clk_div);
}
static void IRAM_ATTR uart0_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART_BASE) = c;
}
static void IRAM_ATTR uart1_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART1_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART1_BASE) = c;
}
static void IRAM_ATTR uart2_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART2_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART2_BASE) = c;
}
void uartSetDebug(uart_t* uart)
{
if(uart == NULL || uart->num > 2) {
s_uart_debug_nr = -1;
ets_install_putc1(NULL);
return;
}
if(s_uart_debug_nr == uart->num) {
return;
}
s_uart_debug_nr = uart->num;
switch(s_uart_debug_nr) {
case 0:
ets_install_putc1((void (*)(char)) &uart0_write_char);
break;
case 1:
ets_install_putc1((void (*)(char)) &uart1_write_char);
break;
case 2:
ets_install_putc1((void (*)(char)) &uart2_write_char);
break;
default:
ets_install_putc1(NULL);
break;
}
}
int uartGetDebug()
{
return s_uart_debug_nr;
}