This is very much still work in progress and much more will change before the final 2.0.0 Some APIs have changed. New libraries have been added. LittleFS included. Co-authored-by: Seon Rozenblum <seonr@3sprockets.com> Co-authored-by: Me No Dev <me-no-dev@users.noreply.github.com> Co-authored-by: geeksville <kevinh@geeksville.com> Co-authored-by: Mike Dunston <m_dunston@comcast.net> Co-authored-by: Unexpected Maker <seon@unexpectedmaker.com> Co-authored-by: Seon Rozenblum <seonr@3sprockets.com> Co-authored-by: microDev <70126934+microDev1@users.noreply.github.com> Co-authored-by: tobozo <tobozo@users.noreply.github.com> Co-authored-by: bobobo1618 <bobobo1618@users.noreply.github.com> Co-authored-by: lorol <lorolouis@gmail.com> Co-authored-by: geeksville <kevinh@geeksville.com> Co-authored-by: Limor "Ladyada" Fried <limor@ladyada.net> Co-authored-by: Sweety <switi.mhaiske@espressif.com> Co-authored-by: Loick MAHIEUX <loick111@gmail.com> Co-authored-by: Larry Bernstone <lbernstone@gmail.com> Co-authored-by: Valerii Koval <valeros@users.noreply.github.com> Co-authored-by: 快乐的我531 <2302004040@qq.com> Co-authored-by: chegewara <imperiaonline4@gmail.com> Co-authored-by: Clemens Kirchgatterer <clemens@1541.org> Co-authored-by: Aron Rubin <aronrubin@gmail.com> Co-authored-by: Pete Lewis <601236+lewispg228@users.noreply.github.com>
505 lines
12 KiB
C++
505 lines
12 KiB
C++
// Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef _dspm_mat_h_
|
|
#define _dspm_mat_h_
|
|
#include <iostream>
|
|
|
|
/**
|
|
* @brief DSP matrix namespace
|
|
*
|
|
* DSP library matrix namespace.
|
|
*/
|
|
namespace dspm {
|
|
/**
|
|
* @brief Matrix
|
|
*
|
|
* The Mat class provides basic matrix operations on single-precision floating point values.
|
|
*/
|
|
class Mat {
|
|
public:
|
|
/**
|
|
* Constructor allocate internal buffer.
|
|
* @param[in] rows: amount of matrix rows
|
|
* @param[in] cols: amount of matrix columns
|
|
*/
|
|
Mat(int rows, int cols);
|
|
/**
|
|
* Constructor use external buffer.
|
|
* @param[in] data: external buffer with row-major matrix data
|
|
* @param[in] rows: amount of matrix rows
|
|
* @param[in] cols: amount of matrix columns
|
|
*/
|
|
Mat(float *data, int rows, int cols);
|
|
/**
|
|
* Allocate matrix with undefined size.
|
|
*/
|
|
Mat();
|
|
virtual ~Mat();
|
|
/**
|
|
* Make copy of matrix.
|
|
* @param[in] src: source matrix
|
|
*/
|
|
Mat(const Mat &src);
|
|
/**
|
|
* Copy operator
|
|
*
|
|
* @param[in] src: source matrix
|
|
*
|
|
* @return
|
|
* - matrix copy
|
|
*/
|
|
Mat &operator=(const Mat &src);
|
|
|
|
bool ext_buff; /*!< Flag indicates that matrix use external buffer*/
|
|
|
|
/**
|
|
* Access to the matrix elements.
|
|
* @param[in] row: row position
|
|
* @param[in] col: column position
|
|
*
|
|
* @return
|
|
* - element of matrix M[row][col]
|
|
*/
|
|
inline float &operator()(int row, int col)
|
|
{
|
|
return data[row * this->cols + col];
|
|
}
|
|
/**
|
|
* Access to the matrix elements.
|
|
* @param[in] row: row position
|
|
* @param[in] col: column position
|
|
*
|
|
* @return
|
|
* - element of matrix M[row][col]
|
|
*/
|
|
inline const float &operator()(int row, int col) const
|
|
{
|
|
return data[row * this->cols + col];
|
|
}
|
|
|
|
/**
|
|
* += operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: source matrix
|
|
*
|
|
* @return
|
|
* - result matrix: result += A
|
|
*/
|
|
Mat &operator+=(const Mat &A);
|
|
|
|
/**
|
|
* += operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] C: constant
|
|
*
|
|
* @return
|
|
* - result matrix: result += C
|
|
*/
|
|
Mat &operator+=(float C);
|
|
/**
|
|
* -= operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: source matrix
|
|
*
|
|
* @return
|
|
* - result matrix: result -= A
|
|
*/
|
|
Mat &operator-=(const Mat &A);
|
|
|
|
/**
|
|
* -= operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] C: constant
|
|
*
|
|
* @return
|
|
* - result matrix: result -= C
|
|
*/
|
|
Mat &operator-=(float C);
|
|
|
|
/**
|
|
* *= operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: source matrix
|
|
*
|
|
* @return
|
|
* - result matrix: result -= A
|
|
*/
|
|
Mat &operator*=(const Mat &A);
|
|
/**
|
|
* += with constant operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] C: constant value
|
|
*
|
|
* @return
|
|
* - result matrix: result *= C
|
|
*/
|
|
Mat &operator*=(float C);
|
|
/**
|
|
* /= with constant operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] C: constant value
|
|
*
|
|
* @return
|
|
* - result matrix: result /= C
|
|
*/
|
|
Mat &operator/=(float C);
|
|
/**
|
|
* /= operator
|
|
*
|
|
* @param[in] B: source matrix
|
|
*
|
|
* @return
|
|
* - result matrix: result[i,j] = result[i,j]/B[i,j]
|
|
*/
|
|
Mat &operator/=(const Mat &B);
|
|
/**
|
|
* ^= xor with constant operator
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
* @param[in] C: constant value
|
|
*
|
|
* @return
|
|
* - result matrix: result ^= C
|
|
*/
|
|
Mat operator^(int C);
|
|
|
|
/**
|
|
* Swap two rows between each other.
|
|
* @param[in] row1: position of first row
|
|
* @param[in] row2: position of second row
|
|
*/
|
|
void swapRows(int row1, int row2);
|
|
/**
|
|
* Matrix transpose.
|
|
* Change rows and columns between each other.
|
|
*
|
|
* @return
|
|
* - transposed matrix
|
|
*/
|
|
Mat t();
|
|
|
|
/**
|
|
* Create identity matrix.
|
|
* Create a square matrix and fill diagonal with 1.
|
|
*
|
|
* @param[in] size: matrix size
|
|
*
|
|
* @return
|
|
* - matrix [N]x[N] with 1 in diagonal
|
|
*/
|
|
static Mat eye(int size);
|
|
|
|
/**
|
|
* Create matrix with all elements 1.
|
|
* Create a square matrix and fill all elements with 1.
|
|
*
|
|
* @param[in] size: matrix size
|
|
*
|
|
* @return
|
|
* - matrix [N]x[N] with 1 in all elements
|
|
*/
|
|
static Mat ones(int size);
|
|
|
|
/**
|
|
* Return part of matrix from defined position (startRow, startCol) as a matrix[blockRows x blockCols].
|
|
*
|
|
* @param[in] startRow: start row position
|
|
* @param[in] startCol: start column position
|
|
* @param[in] blockRows: amount of rows in result matrix
|
|
* @param[in] blockCols: amount of columns in the result matrix
|
|
*
|
|
* @return
|
|
* - matrix [blockRows]x[blockCols]
|
|
*/
|
|
Mat block(int startRow, int startCol, int blockRows, int blockCols);
|
|
|
|
/**
|
|
* Normalizes the vector, i.e. divides it by its own norm.
|
|
* If it's matrix, calculate matrix norm
|
|
*
|
|
*/
|
|
void normalize(void);
|
|
|
|
/**
|
|
* Return norm of the vector.
|
|
* If it's matrix, calculate matrix norm
|
|
*
|
|
* @return
|
|
* - matrix norm
|
|
*/
|
|
float norm(void);
|
|
|
|
/**
|
|
* The method fill 0 to the matrix structure.
|
|
*
|
|
*/
|
|
void clear(void);
|
|
|
|
/**
|
|
* @brief Solve the matrix
|
|
*
|
|
* Solve matrix. Find roots for the matrix A*x = b
|
|
*
|
|
* @param[in] A: matrix [N]x[N] with input coefficients
|
|
* @param[in] b: vector [N]x[1] with result values
|
|
*
|
|
* @return
|
|
* - matrix [N]x[1] with roots
|
|
*/
|
|
static Mat solve(Mat A, Mat b);
|
|
/**
|
|
* @brief Band solve the matrix
|
|
*
|
|
* Solve band matrix. Find roots for the matrix A*x = b with bandwidth k.
|
|
*
|
|
* @param[in] A: matrix [N]x[N] with input coefficients
|
|
* @param[in] b: vector [N]x[1] with result values
|
|
* @param[in] k: upper bandwidth value
|
|
*
|
|
* @return
|
|
* - matrix [N]x[1] with roots
|
|
*/
|
|
static Mat bandSolve(Mat A, Mat b, int k);
|
|
/**
|
|
* @brief Solve the matrix
|
|
*
|
|
* Different way to solve the matrix. Find roots for the matrix A*x = y
|
|
*
|
|
* @param[in] A: matrix [N]x[N] with input coefficients
|
|
* @param[in] y: vector [N]x[1] with result values
|
|
*
|
|
* @return
|
|
* - matrix [N]x[1] with roots
|
|
*/
|
|
static Mat roots(Mat A, Mat y);
|
|
|
|
/**
|
|
* @brief Dotproduct of two vectors
|
|
*
|
|
* The method returns dotproduct of two vectors
|
|
*
|
|
* @param[in] A: Input vector A Nx1
|
|
* @param[in] B: Input vector B Nx1
|
|
*
|
|
* @return
|
|
* - dotproduct value
|
|
*/
|
|
static float dotProduct(Mat A, Mat B);
|
|
|
|
/**
|
|
* @brief Augmented matrices
|
|
*
|
|
* Augmented matrices
|
|
*
|
|
* @param[in] A: Input vector A MxN
|
|
* @param[in] B: Input vector B MxK
|
|
*
|
|
* @return
|
|
* - Augmented matrix Mx(N+K)
|
|
*/
|
|
static Mat augment(Mat A, Mat B);
|
|
/**
|
|
* @brief Gaussian Elimination
|
|
*
|
|
* Gaussian Elimination of matrix
|
|
*
|
|
* @return
|
|
* - result matrix
|
|
*/
|
|
Mat gaussianEliminate();
|
|
|
|
/**
|
|
* Row reduction for Gaussian elimination
|
|
*
|
|
* @return
|
|
* - result matrix
|
|
*/
|
|
Mat rowReduceFromGaussian();
|
|
|
|
/**
|
|
* Find the inverse matrix
|
|
*
|
|
* @return
|
|
* - inverse matrix
|
|
*/
|
|
Mat inverse();
|
|
|
|
/**
|
|
* Find pseudo inverse matrix
|
|
*
|
|
* @return
|
|
* - inverse matrix
|
|
*/
|
|
Mat pinv();
|
|
|
|
int rows; /*!< Amount of rows*/
|
|
int cols; /*!< Amount of columns*/
|
|
float *data; /*!< Buffer with matrix data*/
|
|
int length; /*!< Total amount of data in data array*/
|
|
|
|
static float abs_tol; /*!< Max acceptable absolute tolerance*/
|
|
private:
|
|
Mat cofactor(int row, int col, int n);
|
|
float det(int n);
|
|
Mat adjoint();
|
|
|
|
void allocate(); // Allocate buffer
|
|
Mat expHelper(const Mat &m, int num);
|
|
};
|
|
/**
|
|
* Print matrix to the standard iostream.
|
|
* @param[in] os: output stream
|
|
* @param[in] m: matrix to print
|
|
*
|
|
* @return
|
|
* - output stream
|
|
*/
|
|
std::ostream &operator<<(std::ostream &os, const Mat &m);
|
|
/**
|
|
* Fill the matrix from iostream.
|
|
* @param[in] is: input stream
|
|
* @param[in] m: matrix to fill
|
|
*
|
|
* @return
|
|
* - input stream
|
|
*/
|
|
std::istream &operator>>(std::istream &is, Mat &m);
|
|
|
|
/**
|
|
* + operator, sum of two matrices
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] B: Input matrix B
|
|
*
|
|
* @return
|
|
* - result matrix A+B
|
|
*/
|
|
Mat operator+(const Mat &A, const Mat &B);
|
|
/**
|
|
* + operator, sum of matrix with constant
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] C: Input constant
|
|
*
|
|
* @return
|
|
* - result matrix A+C
|
|
*/
|
|
Mat operator+(const Mat &A, float C);
|
|
|
|
/**
|
|
* - operator, subtraction of two matrices
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] B: Input matrix B
|
|
*
|
|
* @return
|
|
* - result matrix A-B
|
|
*/
|
|
Mat operator-(const Mat &A, const Mat &B);
|
|
/**
|
|
* - operator, sum of matrix with constant
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] C: Input constant
|
|
*
|
|
* @return
|
|
* - result matrix A+C
|
|
*/
|
|
Mat operator-(const Mat &A, float C);
|
|
|
|
/**
|
|
* * operator, multiplication of two matrices.
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] B: Input matrix B
|
|
*
|
|
* @return
|
|
* - result matrix A*B
|
|
*/
|
|
Mat operator*(const Mat &A, const Mat &B);
|
|
|
|
/**
|
|
* * operator, multiplication of matrix with constant
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] C: floating point value
|
|
*
|
|
* @return
|
|
* - result matrix A*B
|
|
*/
|
|
Mat operator*(const Mat &A, float C);
|
|
|
|
/**
|
|
* * operator, multiplication of matrix with constant
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] C: floating point value
|
|
* @param[in] A: Input matrix A
|
|
*
|
|
* @return
|
|
* - result matrix A*B
|
|
*/
|
|
Mat operator*(float C, const Mat &A);
|
|
|
|
/**
|
|
* / operator, divide of matrix by constant
|
|
* The operator use DSP optimized implementation of multiplication.
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] C: floating point value
|
|
*
|
|
* @return
|
|
* - result matrix A*B
|
|
*/
|
|
Mat operator/(const Mat &A, float C);
|
|
|
|
/**
|
|
* / operator, divide matrix A by matrix B
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] B: Input matrix B
|
|
*
|
|
* @return
|
|
* - result matrix C, where C[i,j] = A[i,j]/B[i,j]
|
|
*/
|
|
Mat operator/(const Mat &A, const Mat &B);
|
|
|
|
/**
|
|
* == operator, compare two matrices
|
|
*
|
|
* @param[in] A: Input matrix A
|
|
* @param[in] B: Input matrix B
|
|
*
|
|
* @return
|
|
* - true if matrices are the same
|
|
* - false if matrices are different
|
|
*/
|
|
bool operator==(const Mat &A, const Mat &B);
|
|
|
|
}
|
|
#endif //_dspm_mat_h_
|