arduino-esp32/libraries/WiFi/src/WiFiClient.cpp
Felix Weinrank d5fdd715ef WiFiClient.cpp - Fix connect() behavior (#2784)
* WiFiClient.cpp - Fix connect() behavior

* lwip_connect_r() : check return code
2019-07-09 19:48:05 +03:00

590 lines
15 KiB
C++

/*
Client.h - Client class for Raspberry Pi
Copyright (c) 2016 Hristo Gochkov All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "WiFiClient.h"
#include "WiFi.h"
#include <lwip/sockets.h>
#include <lwip/netdb.h>
#include <errno.h>
#define WIFI_CLIENT_MAX_WRITE_RETRY (10)
#define WIFI_CLIENT_SELECT_TIMEOUT_US (1000000)
#define WIFI_CLIENT_FLUSH_BUFFER_SIZE (1024)
#undef connect
#undef write
#undef read
class WiFiClientRxBuffer {
private:
size_t _size;
uint8_t *_buffer;
size_t _pos;
size_t _fill;
int _fd;
bool _failed;
size_t r_available()
{
if(_fd < 0){
return 0;
}
int count;
int res = lwip_ioctl_r(_fd, FIONREAD, &count);
if(res < 0) {
_failed = true;
return 0;
}
return count;
}
size_t fillBuffer()
{
if(!_buffer){
_buffer = (uint8_t *)malloc(_size);
if(!_buffer) {
log_e("Not enough memory to allocate buffer");
_failed = true;
return 0;
}
}
if(_fill && _pos == _fill){
_fill = 0;
_pos = 0;
}
if(!_buffer || _size <= _fill || !r_available()) {
return 0;
}
int res = recv(_fd, _buffer + _fill, _size - _fill, MSG_DONTWAIT);
if(res < 0) {
if(errno != EWOULDBLOCK) {
_failed = true;
}
return 0;
}
_fill += res;
return res;
}
public:
WiFiClientRxBuffer(int fd, size_t size=1436)
:_size(size)
,_buffer(NULL)
,_pos(0)
,_fill(0)
,_fd(fd)
,_failed(false)
{
//_buffer = (uint8_t *)malloc(_size);
}
~WiFiClientRxBuffer()
{
free(_buffer);
}
bool failed(){
return _failed;
}
int read(uint8_t * dst, size_t len){
if(!dst || !len || (_pos == _fill && !fillBuffer())){
return -1;
}
size_t a = _fill - _pos;
if(len <= a || ((len - a) <= (_size - _fill) && fillBuffer() >= (len - a))){
if(len == 1){
*dst = _buffer[_pos];
} else {
memcpy(dst, _buffer + _pos, len);
}
_pos += len;
return len;
}
size_t left = len;
size_t toRead = a;
uint8_t * buf = dst;
memcpy(buf, _buffer + _pos, toRead);
_pos += toRead;
left -= toRead;
buf += toRead;
while(left){
if(!fillBuffer()){
return len - left;
}
a = _fill - _pos;
toRead = (a > left)?left:a;
memcpy(buf, _buffer + _pos, toRead);
_pos += toRead;
left -= toRead;
buf += toRead;
}
return len;
}
int peek(){
if(_pos == _fill && !fillBuffer()){
return -1;
}
return _buffer[_pos];
}
size_t available(){
return _fill - _pos + r_available();
}
};
class WiFiClientSocketHandle {
private:
int sockfd;
public:
WiFiClientSocketHandle(int fd):sockfd(fd)
{
}
~WiFiClientSocketHandle()
{
close(sockfd);
}
int fd()
{
return sockfd;
}
};
WiFiClient::WiFiClient():_connected(false),next(NULL)
{
}
WiFiClient::WiFiClient(int fd):_connected(true),next(NULL)
{
clientSocketHandle.reset(new WiFiClientSocketHandle(fd));
_rxBuffer.reset(new WiFiClientRxBuffer(fd));
}
WiFiClient::~WiFiClient()
{
stop();
}
WiFiClient & WiFiClient::operator=(const WiFiClient &other)
{
stop();
clientSocketHandle = other.clientSocketHandle;
_rxBuffer = other._rxBuffer;
_connected = other._connected;
return *this;
}
void WiFiClient::stop()
{
clientSocketHandle = NULL;
_rxBuffer = NULL;
_connected = false;
}
int WiFiClient::connect(IPAddress ip, uint16_t port)
{
return connect(ip,port,-1);
}
int WiFiClient::connect(IPAddress ip, uint16_t port, int32_t timeout)
{
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
log_e("socket: %d", errno);
return 0;
}
fcntl( sockfd, F_SETFL, fcntl( sockfd, F_GETFL, 0 ) | O_NONBLOCK );
uint32_t ip_addr = ip;
struct sockaddr_in serveraddr;
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((const void *)(&ip_addr), (void *)&serveraddr.sin_addr.s_addr, 4);
serveraddr.sin_port = htons(port);
fd_set fdset;
struct timeval tv;
FD_ZERO(&fdset);
FD_SET(sockfd, &fdset);
tv.tv_sec = 0;
tv.tv_usec = timeout * 1000;
int res = lwip_connect_r(sockfd, (struct sockaddr*)&serveraddr, sizeof(serveraddr));
if (res < 0 && errno != EINPROGRESS) {
log_e("connect on fd %d, errno: %d, \"%s\"", sockfd, errno, strerror(errno));
close(sockfd);
return 0;
}
res = select(sockfd + 1, nullptr, &fdset, nullptr, timeout<0 ? nullptr : &tv);
if (res < 0) {
log_e("select on fd %d, errno: %d, \"%s\"", sockfd, errno, strerror(errno));
close(sockfd);
return 0;
} else if (res == 0) {
log_i("select returned due to timeout %d ms for fd %d", timeout, sockfd);
close(sockfd);
return 0;
} else {
int sockerr;
socklen_t len = (socklen_t)sizeof(int);
res = getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &sockerr, &len);
if (res < 0) {
log_e("getsockopt on fd %d, errno: %d, \"%s\"", sockfd, errno, strerror(errno));
close(sockfd);
return 0;
}
if (sockerr != 0) {
log_e("socket error on fd %d, errno: %d, \"%s\"", sockfd, sockerr, strerror(sockerr));
close(sockfd);
return 0;
}
}
fcntl( sockfd, F_SETFL, fcntl( sockfd, F_GETFL, 0 ) & (~O_NONBLOCK) );
clientSocketHandle.reset(new WiFiClientSocketHandle(sockfd));
_rxBuffer.reset(new WiFiClientRxBuffer(sockfd));
_connected = true;
return 1;
}
int WiFiClient::connect(const char *host, uint16_t port)
{
return connect(host,port,-1);
}
int WiFiClient::connect(const char *host, uint16_t port, int32_t timeout)
{
IPAddress srv((uint32_t)0);
if(!WiFiGenericClass::hostByName(host, srv)){
return 0;
}
return connect(srv, port, timeout);
}
int WiFiClient::setSocketOption(int option, char* value, size_t len)
{
int res = setsockopt(fd(), SOL_SOCKET, option, value, len);
if(res < 0) {
log_e("%X : %d", option, errno);
}
return res;
}
int WiFiClient::setTimeout(uint32_t seconds)
{
Client::setTimeout(seconds * 1000);
struct timeval tv;
tv.tv_sec = seconds;
tv.tv_usec = 0;
if(setSocketOption(SO_RCVTIMEO, (char *)&tv, sizeof(struct timeval)) < 0) {
return -1;
}
return setSocketOption(SO_SNDTIMEO, (char *)&tv, sizeof(struct timeval));
}
int WiFiClient::setOption(int option, int *value)
{
int res = setsockopt(fd(), IPPROTO_TCP, option, (char *) value, sizeof(int));
if(res < 0) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
}
return res;
}
int WiFiClient::getOption(int option, int *value)
{
size_t size = sizeof(int);
int res = getsockopt(fd(), IPPROTO_TCP, option, (char *)value, &size);
if(res < 0) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
}
return res;
}
int WiFiClient::setNoDelay(bool nodelay)
{
int flag = nodelay;
return setOption(TCP_NODELAY, &flag);
}
bool WiFiClient::getNoDelay()
{
int flag = 0;
getOption(TCP_NODELAY, &flag);
return flag;
}
size_t WiFiClient::write(uint8_t data)
{
return write(&data, 1);
}
int WiFiClient::read()
{
uint8_t data = 0;
int res = read(&data, 1);
if(res < 0) {
return res;
}
return data;
}
size_t WiFiClient::write(const uint8_t *buf, size_t size)
{
int res =0;
int retry = WIFI_CLIENT_MAX_WRITE_RETRY;
int socketFileDescriptor = fd();
size_t totalBytesSent = 0;
size_t bytesRemaining = size;
if(!_connected || (socketFileDescriptor < 0)) {
return 0;
}
while(retry) {
//use select to make sure the socket is ready for writing
fd_set set;
struct timeval tv;
FD_ZERO(&set); // empties the set
FD_SET(socketFileDescriptor, &set); // adds FD to the set
tv.tv_sec = 0;
tv.tv_usec = WIFI_CLIENT_SELECT_TIMEOUT_US;
retry--;
if(select(socketFileDescriptor + 1, NULL, &set, NULL, &tv) < 0) {
return 0;
}
if(FD_ISSET(socketFileDescriptor, &set)) {
res = send(socketFileDescriptor, (void*) buf, bytesRemaining, MSG_DONTWAIT);
if(res > 0) {
totalBytesSent += res;
if (totalBytesSent >= size) {
//completed successfully
retry = 0;
} else {
buf += res;
bytesRemaining -= res;
retry = WIFI_CLIENT_MAX_WRITE_RETRY;
}
}
else if(res < 0) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
if(errno != EAGAIN) {
//if resource was busy, can try again, otherwise give up
stop();
res = 0;
retry = 0;
}
}
else {
// Try again
}
}
}
return totalBytesSent;
}
size_t WiFiClient::write_P(PGM_P buf, size_t size)
{
return write(buf, size);
}
size_t WiFiClient::write(Stream &stream)
{
uint8_t * buf = (uint8_t *)malloc(1360);
if(!buf){
return 0;
}
size_t toRead = 0, toWrite = 0, written = 0;
size_t available = stream.available();
while(available){
toRead = (available > 1360)?1360:available;
toWrite = stream.readBytes(buf, toRead);
written += write(buf, toWrite);
available = stream.available();
}
free(buf);
return written;
}
int WiFiClient::read(uint8_t *buf, size_t size)
{
int res = -1;
res = _rxBuffer->read(buf, size);
if(_rxBuffer->failed()) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
stop();
}
return res;
}
int WiFiClient::peek()
{
int res = _rxBuffer->peek();
if(_rxBuffer->failed()) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
stop();
}
return res;
}
int WiFiClient::available()
{
if(!_rxBuffer)
{
return 0;
}
int res = _rxBuffer->available();
if(_rxBuffer->failed()) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
stop();
}
return res;
}
// Though flushing means to send all pending data,
// seems that in Arduino it also means to clear RX
void WiFiClient::flush() {
int res;
size_t a = available(), toRead = 0;
if(!a){
return;//nothing to flush
}
uint8_t * buf = (uint8_t *)malloc(WIFI_CLIENT_FLUSH_BUFFER_SIZE);
if(!buf){
return;//memory error
}
while(a){
toRead = (a>WIFI_CLIENT_FLUSH_BUFFER_SIZE)?WIFI_CLIENT_FLUSH_BUFFER_SIZE:a;
res = recv(fd(), buf, toRead, MSG_DONTWAIT);
if(res < 0) {
log_e("fail on fd %d, errno: %d, \"%s\"", fd(), errno, strerror(errno));
stop();
break;
}
a -= res;
}
free(buf);
}
uint8_t WiFiClient::connected()
{
if (_connected) {
uint8_t dummy;
int res = recv(fd(), &dummy, 0, MSG_DONTWAIT);
// avoid unused var warning by gcc
(void)res;
switch (errno) {
case EWOULDBLOCK:
case ENOENT: //caused by vfs
_connected = true;
break;
case ENOTCONN:
case EPIPE:
case ECONNRESET:
case ECONNREFUSED:
case ECONNABORTED:
_connected = false;
log_d("Disconnected: RES: %d, ERR: %d", res, errno);
break;
default:
log_i("Unexpected: RES: %d, ERR: %d", res, errno);
_connected = true;
break;
}
}
return _connected;
}
IPAddress WiFiClient::remoteIP(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getpeername(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return IPAddress((uint32_t)(s->sin_addr.s_addr));
}
uint16_t WiFiClient::remotePort(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getpeername(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return ntohs(s->sin_port);
}
IPAddress WiFiClient::remoteIP() const
{
return remoteIP(fd());
}
uint16_t WiFiClient::remotePort() const
{
return remotePort(fd());
}
IPAddress WiFiClient::localIP(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getsockname(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return IPAddress((uint32_t)(s->sin_addr.s_addr));
}
uint16_t WiFiClient::localPort(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getsockname(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return ntohs(s->sin_port);
}
IPAddress WiFiClient::localIP() const
{
return localIP(fd());
}
uint16_t WiFiClient::localPort() const
{
return localPort(fd());
}
bool WiFiClient::operator==(const WiFiClient& rhs)
{
return clientSocketHandle == rhs.clientSocketHandle && remotePort() == rhs.remotePort() && remoteIP() == rhs.remoteIP();
}
int WiFiClient::fd() const
{
if (clientSocketHandle == NULL) {
return -1;
} else {
return clientSocketHandle->fd();
}
}