arduino-esp32/tools/sdk/include/asio/asio/detail/reactive_socket_service.hpp
Me No Dev 04963009ee
Update IDF to a0468b2 (#2108)
* Update IDF to a0468b2

* add missing ld file

* Fix PIO builds and change coex policy
2018-11-26 23:22:11 +01:00

527 lines
17 KiB
C++

//
// detail/reactive_socket_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#define ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_IOCP)
#include "asio/buffer.hpp"
#include "asio/error.hpp"
#include "asio/io_context.hpp"
#include "asio/socket_base.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/reactive_null_buffers_op.hpp"
#include "asio/detail/reactive_socket_accept_op.hpp"
#include "asio/detail/reactive_socket_connect_op.hpp"
#include "asio/detail/reactive_socket_recvfrom_op.hpp"
#include "asio/detail/reactive_socket_sendto_op.hpp"
#include "asio/detail/reactive_socket_service_base.hpp"
#include "asio/detail/reactor.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/socket_holder.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Protocol>
class reactive_socket_service :
public service_base<reactive_socket_service<Protocol> >,
public reactive_socket_service_base
{
public:
// The protocol type.
typedef Protocol protocol_type;
// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
// The native type of a socket.
typedef socket_type native_handle_type;
// The implementation type of the socket.
struct implementation_type :
reactive_socket_service_base::base_implementation_type
{
// Default constructor.
implementation_type()
: protocol_(endpoint_type().protocol())
{
}
// The protocol associated with the socket.
protocol_type protocol_;
};
// Constructor.
reactive_socket_service(asio::io_context& io_context)
: service_base<reactive_socket_service<Protocol> >(io_context),
reactive_socket_service_base(io_context)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown()
{
this->base_shutdown();
}
// Move-construct a new socket implementation.
void move_construct(implementation_type& impl,
implementation_type& other_impl)
{
this->base_move_construct(impl, other_impl);
impl.protocol_ = other_impl.protocol_;
other_impl.protocol_ = endpoint_type().protocol();
}
// Move-assign from another socket implementation.
void move_assign(implementation_type& impl,
reactive_socket_service_base& other_service,
implementation_type& other_impl)
{
this->base_move_assign(impl, other_service, other_impl);
impl.protocol_ = other_impl.protocol_;
other_impl.protocol_ = endpoint_type().protocol();
}
// Move-construct a new socket implementation from another protocol type.
template <typename Protocol1>
void converting_move_construct(implementation_type& impl,
reactive_socket_service<Protocol1>&,
typename reactive_socket_service<
Protocol1>::implementation_type& other_impl)
{
this->base_move_construct(impl, other_impl);
impl.protocol_ = protocol_type(other_impl.protocol_);
other_impl.protocol_ = typename Protocol1::endpoint().protocol();
}
// Open a new socket implementation.
asio::error_code open(implementation_type& impl,
const protocol_type& protocol, asio::error_code& ec)
{
if (!do_open(impl, protocol.family(),
protocol.type(), protocol.protocol(), ec))
impl.protocol_ = protocol;
return ec;
}
// Assign a native socket to a socket implementation.
asio::error_code assign(implementation_type& impl,
const protocol_type& protocol, const native_handle_type& native_socket,
asio::error_code& ec)
{
if (!do_assign(impl, protocol.type(), native_socket, ec))
impl.protocol_ = protocol;
return ec;
}
// Get the native socket representation.
native_handle_type native_handle(implementation_type& impl)
{
return impl.socket_;
}
// Bind the socket to the specified local endpoint.
asio::error_code bind(implementation_type& impl,
const endpoint_type& endpoint, asio::error_code& ec)
{
socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec);
return ec;
}
// Set a socket option.
template <typename Option>
asio::error_code set_option(implementation_type& impl,
const Option& option, asio::error_code& ec)
{
socket_ops::setsockopt(impl.socket_, impl.state_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), option.size(impl.protocol_), ec);
return ec;
}
// Set a socket option.
template <typename Option>
asio::error_code get_option(const implementation_type& impl,
Option& option, asio::error_code& ec) const
{
std::size_t size = option.size(impl.protocol_);
socket_ops::getsockopt(impl.socket_, impl.state_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), &size, ec);
if (!ec)
option.resize(impl.protocol_, size);
return ec;
}
// Get the local endpoint.
endpoint_type local_endpoint(const implementation_type& impl,
asio::error_code& ec) const
{
endpoint_type endpoint;
std::size_t addr_len = endpoint.capacity();
if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec))
return endpoint_type();
endpoint.resize(addr_len);
return endpoint;
}
// Get the remote endpoint.
endpoint_type remote_endpoint(const implementation_type& impl,
asio::error_code& ec) const
{
endpoint_type endpoint;
std::size_t addr_len = endpoint.capacity();
if (socket_ops::getpeername(impl.socket_,
endpoint.data(), &addr_len, false, ec))
return endpoint_type();
endpoint.resize(addr_len);
return endpoint;
}
// Disable sends or receives on the socket.
asio::error_code shutdown(base_implementation_type& impl,
socket_base::shutdown_type what, asio::error_code& ec)
{
socket_ops::shutdown(impl.socket_, what, ec);
return ec;
}
// Send a datagram to the specified endpoint. Returns the number of bytes
// sent.
template <typename ConstBufferSequence>
size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
asio::error_code& ec)
{
buffer_sequence_adapter<asio::const_buffer,
ConstBufferSequence> bufs(buffers);
return socket_ops::sync_sendto(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), flags,
destination.data(), destination.size(), ec);
}
// Wait until data can be sent without blocking.
size_t send_to(implementation_type& impl, const null_buffers&,
const endpoint_type&, socket_base::message_flags,
asio::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, impl.state_, -1, ec);
return 0;
}
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_send_to(implementation_type& impl,
const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_sendto_op<ConstBufferSequence,
endpoint_type, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl.socket_, buffers, destination, flags, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_send_to"));
start_op(impl, reactor::write_op, p.p, is_continuation, true, false);
p.v = p.p = 0;
}
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler>
void async_send_to(implementation_type& impl, const null_buffers&,
const endpoint_type&, socket_base::message_flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_send_to(null_buffers)"));
start_op(impl, reactor::write_op, p.p, is_continuation, false, false);
p.v = p.p = 0;
}
// Receive a datagram with the endpoint of the sender. Returns the number of
// bytes received.
template <typename MutableBufferSequence>
size_t receive_from(implementation_type& impl,
const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
asio::error_code& ec)
{
buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence> bufs(buffers);
std::size_t addr_len = sender_endpoint.capacity();
std::size_t bytes_recvd = socket_ops::sync_recvfrom(
impl.socket_, impl.state_, bufs.buffers(), bufs.count(),
flags, sender_endpoint.data(), &addr_len, ec);
if (!ec)
sender_endpoint.resize(addr_len);
return bytes_recvd;
}
// Wait until data can be received without blocking.
size_t receive_from(implementation_type& impl, const null_buffers&,
endpoint_type& sender_endpoint, socket_base::message_flags,
asio::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, impl.state_, -1, ec);
// Reset endpoint since it can be given no sensible value at this time.
sender_endpoint = endpoint_type();
return 0;
}
// Start an asynchronous receive. The buffer for the data being received and
// the sender_endpoint object must both be valid for the lifetime of the
// asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive_from(implementation_type& impl,
const MutableBufferSequence& buffers, endpoint_type& sender_endpoint,
socket_base::message_flags flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_recvfrom_op<MutableBufferSequence,
endpoint_type, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
int protocol = impl.protocol_.type();
p.p = new (p.v) op(impl.socket_, protocol,
buffers, sender_endpoint, flags, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive_from"));
start_op(impl,
(flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation, true, false);
p.v = p.p = 0;
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive_from(implementation_type& impl,
const null_buffers&, endpoint_type& sender_endpoint,
socket_base::message_flags flags, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive_from(null_buffers)"));
// Reset endpoint since it can be given no sensible value at this time.
sender_endpoint = endpoint_type();
start_op(impl,
(flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation, false, false);
p.v = p.p = 0;
}
// Accept a new connection.
template <typename Socket>
asio::error_code accept(implementation_type& impl,
Socket& peer, endpoint_type* peer_endpoint, asio::error_code& ec)
{
// We cannot accept a socket that is already open.
if (peer.is_open())
{
ec = asio::error::already_open;
return ec;
}
std::size_t addr_len = peer_endpoint ? peer_endpoint->capacity() : 0;
socket_holder new_socket(socket_ops::sync_accept(impl.socket_,
impl.state_, peer_endpoint ? peer_endpoint->data() : 0,
peer_endpoint ? &addr_len : 0, ec));
// On success, assign new connection to peer socket object.
if (new_socket.get() != invalid_socket)
{
if (peer_endpoint)
peer_endpoint->resize(addr_len);
peer.assign(impl.protocol_, new_socket.get(), ec);
if (!ec)
new_socket.release();
}
return ec;
}
#if defined(ASIO_HAS_MOVE)
// Accept a new connection.
typename Protocol::socket accept(implementation_type& impl,
io_context* peer_io_context, endpoint_type* peer_endpoint,
asio::error_code& ec)
{
typename Protocol::socket peer(
peer_io_context ? *peer_io_context : io_context_);
std::size_t addr_len = peer_endpoint ? peer_endpoint->capacity() : 0;
socket_holder new_socket(socket_ops::sync_accept(impl.socket_,
impl.state_, peer_endpoint ? peer_endpoint->data() : 0,
peer_endpoint ? &addr_len : 0, ec));
// On success, assign new connection to peer socket object.
if (new_socket.get() != invalid_socket)
{
if (peer_endpoint)
peer_endpoint->resize(addr_len);
peer.assign(impl.protocol_, new_socket.get(), ec);
if (!ec)
new_socket.release();
}
return peer;
}
#endif // defined(ASIO_HAS_MOVE)
// Start an asynchronous accept. The peer and peer_endpoint objects must be
// valid until the accept's handler is invoked.
template <typename Socket, typename Handler>
void async_accept(implementation_type& impl, Socket& peer,
endpoint_type* peer_endpoint, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_accept_op<Socket, Protocol, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl.socket_, impl.state_, peer,
impl.protocol_, peer_endpoint, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_accept"));
start_accept_op(impl, p.p, is_continuation, peer.is_open());
p.v = p.p = 0;
}
#if defined(ASIO_HAS_MOVE)
// Start an asynchronous accept. The peer_endpoint object must be valid until
// the accept's handler is invoked.
template <typename Handler>
void async_accept(implementation_type& impl,
asio::io_context* peer_io_context,
endpoint_type* peer_endpoint, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_move_accept_op<Protocol, Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(peer_io_context ? *peer_io_context : io_context_,
impl.socket_, impl.state_, impl.protocol_, peer_endpoint, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_accept"));
start_accept_op(impl, p.p, is_continuation, false);
p.v = p.p = 0;
}
#endif // defined(ASIO_HAS_MOVE)
// Connect the socket to the specified endpoint.
asio::error_code connect(implementation_type& impl,
const endpoint_type& peer_endpoint, asio::error_code& ec)
{
socket_ops::sync_connect(impl.socket_,
peer_endpoint.data(), peer_endpoint.size(), ec);
return ec;
}
// Start an asynchronous connect.
template <typename Handler>
void async_connect(implementation_type& impl,
const endpoint_type& peer_endpoint, Handler& handler)
{
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_connect_op<Handler> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(impl.socket_, handler);
ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_connect"));
start_connect_op(impl, p.p, is_continuation,
peer_endpoint.data(), peer_endpoint.size());
p.v = p.p = 0;
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_HAS_IOCP)
#endif // ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP