arduino-esp32/cores/esp32/Esp.cpp
Martijn Scheepers 7e9d42da68
ESP.getChipModel() and ESP.getChipCores() (#3847)
* ESP.getChipModel() returns model of the chip

* ESP.getChipCores() returns the core count.

* Example gives chip model, revision and core count.

* Read efuse for chipmodel

Co-authored-by: Martijn Scheepers <ms@SDNengineering.nl>
2020-09-30 14:57:36 +03:00

346 lines
8.2 KiB
C++

/*
Esp.cpp - ESP31B-specific APIs
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#include "Esp.h"
#include "rom/spi_flash.h"
#include "esp_sleep.h"
#include "esp_spi_flash.h"
#include <memory>
#include <soc/soc.h>
#include <soc/efuse_reg.h>
#include <esp_partition.h>
extern "C" {
#include "esp_ota_ops.h"
#include "esp_image_format.h"
}
#include <MD5Builder.h>
/**
* User-defined Literals
* usage:
*
* uint32_t = test = 10_MHz; // --> 10000000
*/
unsigned long long operator"" _kHz(unsigned long long x)
{
return x * 1000;
}
unsigned long long operator"" _MHz(unsigned long long x)
{
return x * 1000 * 1000;
}
unsigned long long operator"" _GHz(unsigned long long x)
{
return x * 1000 * 1000 * 1000;
}
unsigned long long operator"" _kBit(unsigned long long x)
{
return x * 1024;
}
unsigned long long operator"" _MBit(unsigned long long x)
{
return x * 1024 * 1024;
}
unsigned long long operator"" _GBit(unsigned long long x)
{
return x * 1024 * 1024 * 1024;
}
unsigned long long operator"" _kB(unsigned long long x)
{
return x * 1024;
}
unsigned long long operator"" _MB(unsigned long long x)
{
return x * 1024 * 1024;
}
unsigned long long operator"" _GB(unsigned long long x)
{
return x * 1024 * 1024 * 1024;
}
EspClass ESP;
void EspClass::deepSleep(uint32_t time_us)
{
esp_deep_sleep(time_us);
}
void EspClass::restart(void)
{
esp_restart();
}
uint32_t EspClass::getHeapSize(void)
{
multi_heap_info_t info;
heap_caps_get_info(&info, MALLOC_CAP_INTERNAL);
return info.total_free_bytes + info.total_allocated_bytes;
}
uint32_t EspClass::getFreeHeap(void)
{
return heap_caps_get_free_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getMinFreeHeap(void)
{
return heap_caps_get_minimum_free_size(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getMaxAllocHeap(void)
{
return heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL);
}
uint32_t EspClass::getPsramSize(void)
{
multi_heap_info_t info;
heap_caps_get_info(&info, MALLOC_CAP_SPIRAM);
return info.total_free_bytes + info.total_allocated_bytes;
}
uint32_t EspClass::getFreePsram(void)
{
return heap_caps_get_free_size(MALLOC_CAP_SPIRAM);
}
uint32_t EspClass::getMinFreePsram(void)
{
return heap_caps_get_minimum_free_size(MALLOC_CAP_SPIRAM);
}
uint32_t EspClass::getMaxAllocPsram(void)
{
return heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
}
static uint32_t sketchSize(sketchSize_t response) {
esp_image_metadata_t data;
const esp_partition_t *running = esp_ota_get_running_partition();
if (!running) return 0;
const esp_partition_pos_t running_pos = {
.offset = running->address,
.size = running->size,
};
data.start_addr = running_pos.offset;
esp_image_verify(ESP_IMAGE_VERIFY, &running_pos, &data);
if (response) {
return running_pos.size - data.image_len;
} else {
return data.image_len;
}
}
uint32_t EspClass::getSketchSize () {
return sketchSize(SKETCH_SIZE_TOTAL);
}
String EspClass::getSketchMD5()
{
static String result;
if (result.length()) {
return result;
}
uint32_t lengthLeft = getSketchSize();
const esp_partition_t *running = esp_ota_get_running_partition();
if (!running) {
log_e("Partition could not be found");
return String();
}
const size_t bufSize = SPI_FLASH_SEC_SIZE;
std::unique_ptr<uint8_t[]> buf(new uint8_t[bufSize]);
uint32_t offset = 0;
if(!buf.get()) {
log_e("Not enough memory to allocate buffer");
return String();
}
MD5Builder md5;
md5.begin();
while( lengthLeft > 0) {
size_t readBytes = (lengthLeft < bufSize) ? lengthLeft : bufSize;
if (!ESP.flashRead(running->address + offset, reinterpret_cast<uint32_t*>(buf.get()), (readBytes + 3) & ~3)) {
log_e("Could not read buffer from flash");
return String();
}
md5.add(buf.get(), readBytes);
lengthLeft -= readBytes;
offset += readBytes;
}
md5.calculate();
result = md5.toString();
return result;
}
uint32_t EspClass::getFreeSketchSpace () {
const esp_partition_t* _partition = esp_ota_get_next_update_partition(NULL);
if(!_partition){
return 0;
}
return _partition->size;
}
uint8_t EspClass::getChipRevision(void)
{
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
return chip_info.revision;
}
const char * EspClass::getChipModel(void)
{
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_ver = chip_ver & 0x7;
switch (pkg_ver) {
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6 :
return "ESP32-D0WDQ6";
case EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5 :
return "ESP32-D0WDQ5";
case EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 :
return "ESP32-D2WDQ5";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 :
return "ESP32-PICO-D2";
case EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4 :
return "ESP32-PICO-D4";
default:
return "Unknown";
}
}
uint8_t EspClass::getChipCores(void)
{
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
return chip_info.cores;
}
const char * EspClass::getSdkVersion(void)
{
return esp_get_idf_version();
}
uint32_t EspClass::getFlashChipSize(void)
{
esp_image_header_t fhdr;
if(flashRead(0x1000, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) {
return 0;
}
return magicFlashChipSize(fhdr.spi_size);
}
uint32_t EspClass::getFlashChipSpeed(void)
{
esp_image_header_t fhdr;
if(flashRead(0x1000, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) {
return 0;
}
return magicFlashChipSpeed(fhdr.spi_speed);
}
FlashMode_t EspClass::getFlashChipMode(void)
{
esp_image_header_t fhdr;
if(flashRead(0x1000, (uint32_t*)&fhdr, sizeof(esp_image_header_t)) && fhdr.magic != ESP_IMAGE_HEADER_MAGIC) {
return FM_UNKNOWN;
}
return magicFlashChipMode(fhdr.spi_mode);
}
uint32_t EspClass::magicFlashChipSize(uint8_t byte)
{
switch(byte & 0x0F) {
case 0x0: // 8 MBit (1MB)
return (1_MB);
case 0x1: // 16 MBit (2MB)
return (2_MB);
case 0x2: // 32 MBit (4MB)
return (4_MB);
case 0x3: // 64 MBit (8MB)
return (8_MB);
case 0x4: // 128 MBit (16MB)
return (16_MB);
default: // fail?
return 0;
}
}
uint32_t EspClass::magicFlashChipSpeed(uint8_t byte)
{
switch(byte & 0x0F) {
case 0x0: // 40 MHz
return (40_MHz);
case 0x1: // 26 MHz
return (26_MHz);
case 0x2: // 20 MHz
return (20_MHz);
case 0xf: // 80 MHz
return (80_MHz);
default: // fail?
return 0;
}
}
FlashMode_t EspClass::magicFlashChipMode(uint8_t byte)
{
FlashMode_t mode = (FlashMode_t) byte;
if(mode > FM_SLOW_READ) {
mode = FM_UNKNOWN;
}
return mode;
}
bool EspClass::flashEraseSector(uint32_t sector)
{
return spi_flash_erase_sector(sector) == ESP_OK;
}
// Warning: These functions do not work with encrypted flash
bool EspClass::flashWrite(uint32_t offset, uint32_t *data, size_t size)
{
return spi_flash_write(offset, (uint32_t*) data, size) == ESP_OK;
}
bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size)
{
return spi_flash_read(offset, (uint32_t*) data, size) == ESP_OK;
}
uint64_t EspClass::getEfuseMac(void)
{
uint64_t _chipmacid = 0LL;
esp_efuse_mac_get_default((uint8_t*) (&_chipmacid));
return _chipmacid;
}