arduino-esp32/libraries/WiFi/src/WiFiClient.cpp
2017-09-29 20:31:45 +08:00

408 lines
9.5 KiB
C++

/*
Client.h - Client class for Raspberry Pi
Copyright (c) 2016 Hristo Gochkov All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "WiFiClient.h"
#include <lwip/sockets.h>
#include <lwip/netdb.h>
#include <errno.h>
#define WIFI_CLIENT_MAX_WRITE_RETRY (10)
#define WIFI_CLIENT_SELECT_TIMEOUT_US (1000000)
#define WIFI_CLIENT_FLUSH_BUFFER_SIZE (1024)
#undef connect
#undef write
#undef read
class WiFiClientSocketHandle {
private:
int sockfd;
public:
WiFiClientSocketHandle(int fd):sockfd(fd)
{
}
~WiFiClientSocketHandle()
{
close(sockfd);
}
int fd()
{
return sockfd;
}
};
WiFiClient::WiFiClient():_connected(false),next(NULL)
{
}
WiFiClient::WiFiClient(int fd):_connected(true),next(NULL)
{
clientSocketHandle.reset(new WiFiClientSocketHandle(fd));
}
WiFiClient::~WiFiClient()
{
stop();
}
WiFiClient & WiFiClient::operator=(const WiFiClient &other)
{
stop();
clientSocketHandle = other.clientSocketHandle;
_connected = other._connected;
return *this;
}
void WiFiClient::stop()
{
clientSocketHandle = NULL;
_connected = false;
}
int WiFiClient::connect(IPAddress ip, uint16_t port)
{
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
log_e("socket: %d", errno);
return 0;
}
uint32_t ip_addr = ip;
struct sockaddr_in serveraddr;
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((const void *)(&ip_addr), (void *)&serveraddr.sin_addr.s_addr, 4);
serveraddr.sin_port = htons(port);
int res = lwip_connect_r(sockfd, (struct sockaddr*)&serveraddr, sizeof(serveraddr));
if (res < 0) {
log_e("lwip_connect_r: %d", errno);
close(sockfd);
return 0;
}
clientSocketHandle.reset(new WiFiClientSocketHandle(sockfd));
_connected = true;
return 1;
}
int WiFiClient::connect(const char *host, uint16_t port)
{
struct hostent *server;
server = gethostbyname(host);
if (server == NULL) {
return 0;
}
IPAddress srv((const uint8_t *)(server->h_addr));
return connect(srv, port);
}
int WiFiClient::setSocketOption(int option, char* value, size_t len)
{
int res = setsockopt(fd(), SOL_SOCKET, option, value, len);
if(res < 0) {
log_e("%X : %d", option, errno);
}
return res;
}
int WiFiClient::setTimeout(uint32_t seconds)
{
struct timeval tv;
tv.tv_sec = seconds;
tv.tv_usec = 0;
if(setSocketOption(SO_RCVTIMEO, (char *)&tv, sizeof(struct timeval)) < 0) {
return -1;
}
return setSocketOption(SO_SNDTIMEO, (char *)&tv, sizeof(struct timeval));
}
int WiFiClient::setOption(int option, int *value)
{
int res = setsockopt(fd(), IPPROTO_TCP, option, (char *) value, sizeof(int));
if(res < 0) {
log_e("%d", errno);
}
return res;
}
int WiFiClient::getOption(int option, int *value)
{
size_t size = sizeof(int);
int res = getsockopt(fd(), IPPROTO_TCP, option, (char *)value, &size);
if(res < 0) {
log_e("%d", errno);
}
return res;
}
int WiFiClient::setNoDelay(bool nodelay)
{
int flag = nodelay;
return setOption(TCP_NODELAY, &flag);
}
bool WiFiClient::getNoDelay()
{
int flag = 0;
getOption(TCP_NODELAY, &flag);
return flag;
}
size_t WiFiClient::write(uint8_t data)
{
return write(&data, 1);
}
int WiFiClient::read()
{
uint8_t data = 0;
int res = read(&data, 1);
if(res < 0) {
return res;
}
return data;
}
size_t WiFiClient::write(const uint8_t *buf, size_t size)
{
int res =0;
int retry = WIFI_CLIENT_MAX_WRITE_RETRY;
int socketFileDescriptor = fd();
size_t totalBytesSent = 0;
size_t bytesRemaining = size;
if(!_connected || (socketFileDescriptor < 0)) {
return 0;
}
while(retry) {
//use select to make sure the socket is ready for writing
fd_set set;
struct timeval tv;
FD_ZERO(&set); // empties the set
FD_SET(socketFileDescriptor, &set); // adds FD to the set
tv.tv_sec = 0;
tv.tv_usec = WIFI_CLIENT_SELECT_TIMEOUT_US;
retry--;
if(select(socketFileDescriptor + 1, NULL, &set, NULL, &tv) < 0) {
return 0;
}
if(FD_ISSET(socketFileDescriptor, &set)) {
res = send(socketFileDescriptor, (void*) buf, bytesRemaining, MSG_DONTWAIT);
if(res > 0) {
totalBytesSent += res;
if (totalBytesSent >= size) {
//completed successfully
retry = 0;
} else {
buf += res;
bytesRemaining -= res;
}
}
else if(res < 0) {
log_e("%d", errno);
if(errno != EAGAIN) {
//if resource was busy, can try again, otherwise give up
stop();
res = 0;
retry = 0;
}
}
else {
// Try again
}
}
}
return totalBytesSent;
}
size_t WiFiClient::write_P(PGM_P buf, size_t size)
{
return write(buf, size);
}
int WiFiClient::read(uint8_t *buf, size_t size)
{
if(!available()) {
return -1;
}
int res = recv(fd(), buf, size, MSG_DONTWAIT);
if(res < 0 && errno != EWOULDBLOCK) {
log_e("%d", errno);
stop();
}
return res;
}
int WiFiClient::peek()
{
if(!available()) {
return -1;
}
uint8_t data = 0;
int res = recv(fd(), &data, 1, MSG_PEEK);
if(res < 0 && errno != EWOULDBLOCK) {
log_e("%d", errno);
stop();
}
return data;
}
int WiFiClient::available()
{
if(!_connected) {
return 0;
}
int count;
int res = ioctl(fd(), FIONREAD, &count);
if(res < 0) {
log_e("%d", errno);
stop();
return 0;
}
return count;
}
// Though flushing means to send all pending data,
// seems that in Arduino it also means to clear RX
void WiFiClient::flush() {
int res;
size_t a = available(), toRead = 0;
if(!a){
return;//nothing to flush
}
uint8_t * buf = (uint8_t *)malloc(WIFI_CLIENT_FLUSH_BUFFER_SIZE);
if(!buf){
return;//memory error
}
while(a){
toRead = (a>WIFI_CLIENT_FLUSH_BUFFER_SIZE)?WIFI_CLIENT_FLUSH_BUFFER_SIZE:a;
res = recv(fd(), buf, toRead, MSG_DONTWAIT);
if(res < 0) {
log_e("%d", errno);
stop();
break;
}
a -= res;
}
free(buf);
}
uint8_t WiFiClient::connected()
{
if (_connected) {
uint8_t dummy;
int res = recv(fd(), &dummy, 0, MSG_DONTWAIT);
if (res <= 0) {
switch (errno) {
case ENOTCONN:
case EPIPE:
case ECONNRESET:
case ECONNREFUSED:
case ECONNABORTED:
_connected = false;
break;
default:
_connected = true;
break;
}
}
else {
// Should never happen since requested 0 bytes
_connected = true;
}
}
return _connected;
}
IPAddress WiFiClient::remoteIP(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getpeername(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return IPAddress((uint32_t)(s->sin_addr.s_addr));
}
uint16_t WiFiClient::remotePort(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getpeername(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return ntohs(s->sin_port);
}
IPAddress WiFiClient::remoteIP() const
{
return remoteIP(fd());
}
uint16_t WiFiClient::remotePort() const
{
return remotePort(fd());
}
IPAddress WiFiClient::localIP(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getsockname(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return IPAddress((uint32_t)(s->sin_addr.s_addr));
}
uint16_t WiFiClient::localPort(int fd) const
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
getsockname(fd, (struct sockaddr*)&addr, &len);
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
return ntohs(s->sin_port);
}
IPAddress WiFiClient::localIP() const
{
return localIP(fd());
}
uint16_t WiFiClient::localPort() const
{
return localPort(fd());
}
bool WiFiClient::operator==(const WiFiClient& rhs)
{
return clientSocketHandle == rhs.clientSocketHandle && remotePort() == rhs.remotePort() && remoteIP() == rhs.remoteIP();
}
int WiFiClient::fd() const
{
if (clientSocketHandle == NULL) {
return -1;
} else {
return clientSocketHandle->fd();
}
}