arduino-esp32/cores/esp32/esp32-hal-uart.c

636 lines
17 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-uart.h"
#include "esp32-hal.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "rom/ets_sys.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "rom/uart.h"
#include "soc/uart_reg.h"
#include "soc/uart_struct.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/dport_reg.h"
#include "soc/rtc.h"
#include "esp_intr_alloc.h"
#define UART_REG_BASE(u) ((u==0)?DR_REG_UART_BASE:( (u==1)?DR_REG_UART1_BASE:( (u==2)?DR_REG_UART2_BASE:0)))
#define UART_RXD_IDX(u) ((u==0)?U0RXD_IN_IDX:( (u==1)?U1RXD_IN_IDX:( (u==2)?U2RXD_IN_IDX:0)))
#define UART_TXD_IDX(u) ((u==0)?U0TXD_OUT_IDX:( (u==1)?U1TXD_OUT_IDX:( (u==2)?U2TXD_OUT_IDX:0)))
#define UART_INTR_SOURCE(u) ((u==0)?ETS_UART0_INTR_SOURCE:( (u==1)?ETS_UART1_INTR_SOURCE:((u==2)?ETS_UART2_INTR_SOURCE:0)))
static int s_uart_debug_nr = 0;
struct uart_struct_t {
uart_dev_t * dev;
#if !CONFIG_DISABLE_HAL_LOCKS
xSemaphoreHandle lock;
#endif
uint8_t num;
xQueueHandle queue;
intr_handle_t intr_handle;
};
#if CONFIG_DISABLE_HAL_LOCKS
#define UART_MUTEX_LOCK()
#define UART_MUTEX_UNLOCK()
static uart_t _uart_bus_array[3] = {
{(volatile uart_dev_t *)(DR_REG_UART_BASE), 0, NULL, NULL},
{(volatile uart_dev_t *)(DR_REG_UART1_BASE), 1, NULL, NULL},
{(volatile uart_dev_t *)(DR_REG_UART2_BASE), 2, NULL, NULL}
};
#else
#define UART_MUTEX_LOCK() do {} while (xSemaphoreTake(uart->lock, portMAX_DELAY) != pdPASS)
#define UART_MUTEX_UNLOCK() xSemaphoreGive(uart->lock)
static uart_t _uart_bus_array[3] = {
{(volatile uart_dev_t *)(DR_REG_UART_BASE), NULL, 0, NULL, NULL},
{(volatile uart_dev_t *)(DR_REG_UART1_BASE), NULL, 1, NULL, NULL},
{(volatile uart_dev_t *)(DR_REG_UART2_BASE), NULL, 2, NULL, NULL}
};
#endif
static void uart_on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb);
static void IRAM_ATTR _uart_isr(void *arg)
{
uint8_t i, c;
BaseType_t xHigherPriorityTaskWoken;
uart_t* uart;
for(i=0;i<3;i++){
uart = &_uart_bus_array[i];
if(uart->intr_handle == NULL){
continue;
}
uart->dev->int_clr.rxfifo_full = 1;
uart->dev->int_clr.frm_err = 1;
uart->dev->int_clr.rxfifo_tout = 1;
while(uart->dev->status.rxfifo_cnt || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
c = uart->dev->fifo.rw_byte;
if(uart->queue != NULL) {
xQueueSendFromISR(uart->queue, &c, &xHigherPriorityTaskWoken);
}
}
}
if (xHigherPriorityTaskWoken) {
portYIELD_FROM_ISR();
}
}
void uartEnableInterrupt(uart_t* uart)
{
UART_MUTEX_LOCK();
uart->dev->conf1.rxfifo_full_thrhd = 112;
uart->dev->conf1.rx_tout_thrhd = 2;
uart->dev->conf1.rx_tout_en = 1;
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
esp_intr_alloc(UART_INTR_SOURCE(uart->num), (int)ESP_INTR_FLAG_IRAM, _uart_isr, NULL, &uart->intr_handle);
UART_MUTEX_UNLOCK();
}
void uartDisableInterrupt(uart_t* uart)
{
UART_MUTEX_LOCK();
uart->dev->conf1.val = 0;
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
esp_intr_free(uart->intr_handle);
uart->intr_handle = NULL;
UART_MUTEX_UNLOCK();
}
void uartDetachRx(uart_t* uart, uint8_t rxPin)
{
if(uart == NULL) {
return;
}
pinMatrixInDetach(rxPin, false, false);
uartDisableInterrupt(uart);
}
void uartDetachTx(uart_t* uart, uint8_t txPin)
{
if(uart == NULL) {
return;
}
pinMatrixOutDetach(txPin, false, false);
}
void uartAttachRx(uart_t* uart, uint8_t rxPin, bool inverted)
{
if(uart == NULL || rxPin > 39) {
return;
}
pinMode(rxPin, INPUT);
pinMatrixInAttach(rxPin, UART_RXD_IDX(uart->num), inverted);
uartEnableInterrupt(uart);
}
void uartAttachTx(uart_t* uart, uint8_t txPin, bool inverted)
{
if(uart == NULL || txPin > 39) {
return;
}
pinMode(txPin, OUTPUT);
pinMatrixOutAttach(txPin, UART_TXD_IDX(uart->num), inverted, false);
}
uart_t* uartBegin(uint8_t uart_nr, uint32_t baudrate, uint32_t config, int8_t rxPin, int8_t txPin, uint16_t queueLen, bool inverted)
{
if(uart_nr > 2) {
return NULL;
}
if(rxPin == -1 && txPin == -1) {
return NULL;
}
uart_t* uart = &_uart_bus_array[uart_nr];
#if !CONFIG_DISABLE_HAL_LOCKS
if(uart->lock == NULL) {
uart->lock = xSemaphoreCreateMutex();
if(uart->lock == NULL) {
return NULL;
}
}
#endif
if(queueLen && uart->queue == NULL) {
uart->queue = xQueueCreate(queueLen, sizeof(uint8_t)); //initialize the queue
if(uart->queue == NULL) {
return NULL;
}
}
if(uart_nr == 1){
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART1_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART1_RST);
} else if(uart_nr == 2){
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART2_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART2_RST);
} else {
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART_RST);
}
uartFlush(uart);
uartSetBaudRate(uart, baudrate);
UART_MUTEX_LOCK();
uart->dev->conf0.val = config;
#define TWO_STOP_BITS_CONF 0x3
#define ONE_STOP_BITS_CONF 0x1
if ( uart->dev->conf0.stop_bit_num == TWO_STOP_BITS_CONF) {
uart->dev->conf0.stop_bit_num = ONE_STOP_BITS_CONF;
uart->dev->rs485_conf.dl1_en = 1;
}
// tx_idle_num : idle interval after tx FIFO is empty(unit: the time it takes to send one bit under current baudrate)
// Setting it to 0 prevents line idle time/delays when sending messages with small intervals
uart->dev->idle_conf.tx_idle_num = 0; //
UART_MUTEX_UNLOCK();
if(rxPin != -1) {
uartAttachRx(uart, rxPin, inverted);
}
if(txPin != -1) {
uartAttachTx(uart, txPin, inverted);
}
addApbChangeCallback(uart, uart_on_apb_change);
return uart;
}
void uartEnd(uart_t* uart, uint8_t txPin, uint8_t rxPin)
{
if(uart == NULL) {
return;
}
removeApbChangeCallback(uart, uart_on_apb_change);
UART_MUTEX_LOCK();
if(uart->queue != NULL) {
vQueueDelete(uart->queue);
uart->queue = NULL;
}
uart->dev->conf0.val = 0;
UART_MUTEX_UNLOCK();
uartDetachRx(uart, rxPin);
uartDetachTx(uart, txPin);
}
size_t uartResizeRxBuffer(uart_t * uart, size_t new_size) {
if(uart == NULL) {
return 0;
}
UART_MUTEX_LOCK();
if(uart->queue != NULL) {
vQueueDelete(uart->queue);
uart->queue = xQueueCreate(new_size, sizeof(uint8_t));
if(uart->queue == NULL) {
UART_MUTEX_UNLOCK();
return NULL;
}
}
UART_MUTEX_UNLOCK();
return new_size;
}
void uartSetRxInvert(uart_t* uart, bool invert)
{
if (uart == NULL)
return;
if (invert)
uart->dev->conf0.rxd_inv = 1;
else
uart->dev->conf0.rxd_inv = 0;
}
uint32_t uartAvailable(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
return (uxQueueMessagesWaiting(uart->queue) + uart->dev->status.rxfifo_cnt) ;
}
uint32_t uartAvailableForWrite(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
return 0x7f - uart->dev->status.txfifo_cnt;
}
void uartRxFifoToQueue(uart_t* uart)
{
uint8_t c;
UART_MUTEX_LOCK();
//disable interrupts
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
while (uart->dev->status.rxfifo_cnt || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
c = uart->dev->fifo.rw_byte;
xQueueSend(uart->queue, &c, 0);
}
//enable interrupts
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
UART_MUTEX_UNLOCK();
}
uint8_t uartRead(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
uint8_t c;
if ((uxQueueMessagesWaiting(uart->queue) == 0) && (uart->dev->status.rxfifo_cnt > 0))
{
uartRxFifoToQueue(uart);
}
if(xQueueReceive(uart->queue, &c, 0)) {
return c;
}
return 0;
}
uint8_t uartPeek(uart_t* uart)
{
if(uart == NULL || uart->queue == NULL) {
return 0;
}
uint8_t c;
if ((uxQueueMessagesWaiting(uart->queue) == 0) && (uart->dev->status.rxfifo_cnt > 0))
{
uartRxFifoToQueue(uart);
}
if(xQueuePeek(uart->queue, &c, 0)) {
return c;
}
return 0;
}
void uartWrite(uart_t* uart, uint8_t c)
{
if(uart == NULL) {
return;
}
UART_MUTEX_LOCK();
while(uart->dev->status.txfifo_cnt == 0x7F);
uart->dev->fifo.rw_byte = c;
UART_MUTEX_UNLOCK();
}
void uartWriteBuf(uart_t* uart, const uint8_t * data, size_t len)
{
if(uart == NULL) {
return;
}
UART_MUTEX_LOCK();
while(len) {
while(uart->dev->status.txfifo_cnt == 0x7F);
uart->dev->fifo.rw_byte = *data++;
len--;
}
UART_MUTEX_UNLOCK();
}
void uartFlush(uart_t* uart)
{
uartFlushTxOnly(uart,false);
}
void uartFlushTxOnly(uart_t* uart, bool txOnly)
{
if(uart == NULL) {
return;
}
UART_MUTEX_LOCK();
while(uart->dev->status.txfifo_cnt || uart->dev->status.st_utx_out);
if( !txOnly ){
//Due to hardware issue, we can not use fifo_rst to reset uart fifo.
//See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
// we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
while(uart->dev->status.rxfifo_cnt != 0 || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
READ_PERI_REG(UART_FIFO_REG(uart->num));
}
xQueueReset(uart->queue);
}
UART_MUTEX_UNLOCK();
}
void uartSetBaudRate(uart_t* uart, uint32_t baud_rate)
{
if(uart == NULL) {
return;
}
UART_MUTEX_LOCK();
uint32_t clk_div = ((getApbFrequency()<<4)/baud_rate);
uart->dev->clk_div.div_int = clk_div>>4 ;
uart->dev->clk_div.div_frag = clk_div & 0xf;
UART_MUTEX_UNLOCK();
}
static void uart_on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb)
{
uart_t* uart = (uart_t*)arg;
if(ev_type == APB_BEFORE_CHANGE){
UART_MUTEX_LOCK();
//disabple interrupt
uart->dev->int_ena.val = 0;
uart->dev->int_clr.val = 0xffffffff;
// read RX fifo
uint8_t c;
// BaseType_t xHigherPriorityTaskWoken;
while(uart->dev->status.rxfifo_cnt != 0 || (uart->dev->mem_rx_status.wr_addr != uart->dev->mem_rx_status.rd_addr)) {
c = uart->dev->fifo.rw_byte;
if(uart->queue != NULL ) {
xQueueSend(uart->queue, &c, 1); //&xHigherPriorityTaskWoken);
}
}
UART_MUTEX_UNLOCK();
// wait TX empty
while(uart->dev->status.txfifo_cnt || uart->dev->status.st_utx_out);
} else {
//todo:
// set baudrate
UART_MUTEX_LOCK();
uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F);
uint32_t baud_rate = ((old_apb<<4)/clk_div);
clk_div = ((new_apb<<4)/baud_rate);
uart->dev->clk_div.div_int = clk_div>>4 ;
uart->dev->clk_div.div_frag = clk_div & 0xf;
//enable interrupts
uart->dev->int_ena.rxfifo_full = 1;
uart->dev->int_ena.frm_err = 1;
uart->dev->int_ena.rxfifo_tout = 1;
uart->dev->int_clr.val = 0xffffffff;
UART_MUTEX_UNLOCK();
}
}
uint32_t uartGetBaudRate(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
uint32_t clk_div = (uart->dev->clk_div.div_int << 4) | (uart->dev->clk_div.div_frag & 0x0F);
if(!clk_div) {
return 0;
}
return ((getApbFrequency()<<4)/clk_div);
}
static void IRAM_ATTR uart0_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART_BASE) = c;
}
static void IRAM_ATTR uart1_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART1_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART1_BASE) = c;
}
static void IRAM_ATTR uart2_write_char(char c)
{
while(((ESP_REG(0x01C+DR_REG_UART2_BASE) >> UART_TXFIFO_CNT_S) & 0x7F) == 0x7F);
ESP_REG(DR_REG_UART2_BASE) = c;
}
void uart_install_putc()
{
switch(s_uart_debug_nr) {
case 0:
ets_install_putc1((void (*)(char)) &uart0_write_char);
break;
case 1:
ets_install_putc1((void (*)(char)) &uart1_write_char);
break;
case 2:
ets_install_putc1((void (*)(char)) &uart2_write_char);
break;
default:
ets_install_putc1(NULL);
break;
}
}
void uartSetDebug(uart_t* uart)
{
if(uart == NULL || uart->num > 2) {
s_uart_debug_nr = -1;
//ets_install_putc1(NULL);
//return;
} else
if(s_uart_debug_nr == uart->num) {
return;
} else
s_uart_debug_nr = uart->num;
uart_install_putc();
}
int uartGetDebug()
{
return s_uart_debug_nr;
}
int log_printf(const char *format, ...)
{
if(s_uart_debug_nr < 0){
return 0;
}
static char loc_buf[64];
char * temp = loc_buf;
int len;
va_list arg;
va_list copy;
va_start(arg, format);
va_copy(copy, arg);
len = vsnprintf(NULL, 0, format, arg);
va_end(copy);
if(len >= sizeof(loc_buf)){
temp = (char*)malloc(len+1);
if(temp == NULL) {
return 0;
}
}
vsnprintf(temp, len+1, format, arg);
#if !CONFIG_DISABLE_HAL_LOCKS
if(_uart_bus_array[s_uart_debug_nr].lock){
xSemaphoreTake(_uart_bus_array[s_uart_debug_nr].lock, portMAX_DELAY);
ets_printf("%s", temp);
xSemaphoreGive(_uart_bus_array[s_uart_debug_nr].lock);
} else {
ets_printf("%s", temp);
}
#else
ets_printf("%s", temp);
#endif
va_end(arg);
if(len >= sizeof(loc_buf)){
free(temp);
}
return len;
}
/*
* if enough pulses are detected return the minimum high pulse duration + minimum low pulse duration divided by two.
* This equals one bit period. If flag is true the function return inmediately, otherwise it waits for enough pulses.
*/
unsigned long uartBaudrateDetect(uart_t *uart, bool flg)
{
while(uart->dev->rxd_cnt.edge_cnt < 30) { // UART_PULSE_NUM(uart_num)
if(flg) return 0;
ets_delay_us(1000);
}
UART_MUTEX_LOCK();
unsigned long ret = ((uart->dev->lowpulse.min_cnt + uart->dev->highpulse.min_cnt) >> 1) + 12;
UART_MUTEX_UNLOCK();
return ret;
}
/*
* To start detection of baud rate with the uart the auto_baud.en bit needs to be cleared and set. The bit period is
* detected calling uartBadrateDetect(). The raw baudrate is computed using the UART_CLK_FREQ. The raw baudrate is
* rounded to the closed real baudrate.
*/
void uartStartDetectBaudrate(uart_t *uart) {
if(!uart) return;
uart->dev->auto_baud.glitch_filt = 0x08;
uart->dev->auto_baud.en = 0;
uart->dev->auto_baud.en = 1;
}
unsigned long
uartDetectBaudrate(uart_t *uart)
{
static bool uartStateDetectingBaudrate = false;
if(!uartStateDetectingBaudrate) {
uart->dev->auto_baud.glitch_filt = 0x08;
uart->dev->auto_baud.en = 0;
uart->dev->auto_baud.en = 1;
uartStateDetectingBaudrate = true;
}
unsigned long divisor = uartBaudrateDetect(uart, true);
if (!divisor) {
return 0;
}
uart->dev->auto_baud.en = 0;
uartStateDetectingBaudrate = false; // Initialize for the next round
unsigned long baudrate = getApbFrequency() / divisor;
static const unsigned long default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400};
size_t i;
for (i = 1; i < sizeof(default_rates) / sizeof(default_rates[0]) - 1; i++) // find the nearest real baudrate
{
if (baudrate <= default_rates[i])
{
if (baudrate - default_rates[i - 1] < default_rates[i] - baudrate) {
i--;
}
break;
}
}
return default_rates[i];
}
/*
* Returns the status of the RX state machine, if the value is non-zero the state machine is active.
*/
bool uartRxActive(uart_t* uart) {
return uart->dev->status.st_urx_out != 0;
}