271 lines
11 KiB
C
271 lines
11 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "esp32-hal.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "rom/ets_sys.h"
|
|
#include "esp32-hal-matrix.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/ledc_reg.h"
|
|
#include "soc/ledc_struct.h"
|
|
|
|
#if CONFIG_DISABLE_HAL_LOCKS
|
|
#define LEDC_MUTEX_LOCK()
|
|
#define LEDC_MUTEX_UNLOCK()
|
|
#else
|
|
#define LEDC_MUTEX_LOCK() do {} while (xSemaphoreTake(_ledc_sys_lock, portMAX_DELAY) != pdPASS)
|
|
#define LEDC_MUTEX_UNLOCK() xSemaphoreGive(_ledc_sys_lock)
|
|
xSemaphoreHandle _ledc_sys_lock;
|
|
#endif
|
|
|
|
/*
|
|
* LEDC Chan to Group/Channel/Timer Mapping
|
|
** ledc: 0 => Group: 0, Channel: 0, Timer: 0
|
|
** ledc: 1 => Group: 0, Channel: 1, Timer: 0
|
|
** ledc: 2 => Group: 0, Channel: 2, Timer: 1
|
|
** ledc: 3 => Group: 0, Channel: 3, Timer: 1
|
|
** ledc: 4 => Group: 0, Channel: 4, Timer: 2
|
|
** ledc: 5 => Group: 0, Channel: 5, Timer: 2
|
|
** ledc: 6 => Group: 0, Channel: 6, Timer: 3
|
|
** ledc: 7 => Group: 0, Channel: 7, Timer: 3
|
|
** ledc: 8 => Group: 1, Channel: 0, Timer: 0
|
|
** ledc: 9 => Group: 1, Channel: 1, Timer: 0
|
|
** ledc: 10 => Group: 1, Channel: 2, Timer: 1
|
|
** ledc: 11 => Group: 1, Channel: 3, Timer: 1
|
|
** ledc: 12 => Group: 1, Channel: 4, Timer: 2
|
|
** ledc: 13 => Group: 1, Channel: 5, Timer: 2
|
|
** ledc: 14 => Group: 1, Channel: 6, Timer: 3
|
|
** ledc: 15 => Group: 1, Channel: 7, Timer: 3
|
|
*/
|
|
#define LEDC_CHAN(g,c) LEDC.channel_group[(g)].channel[(c)]
|
|
#define LEDC_TIMER(g,t) LEDC.timer_group[(g)].timer[(t)]
|
|
|
|
static void _on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb){
|
|
if(ev_type == APB_AFTER_CHANGE && old_apb != new_apb){
|
|
uint32_t iarg = (uint32_t)arg;
|
|
uint8_t chan = iarg;
|
|
uint8_t group=(chan/8), timer=((chan/2)%4);
|
|
old_apb /= 1000000;
|
|
new_apb /= 1000000;
|
|
if(LEDC_TIMER(group, timer).conf.tick_sel){
|
|
LEDC_MUTEX_LOCK();
|
|
uint32_t old_div = LEDC_TIMER(group, timer).conf.clock_divider;
|
|
uint32_t div_num = (new_apb * old_div) / old_apb;
|
|
if(div_num > LEDC_DIV_NUM_HSTIMER0_V){
|
|
new_apb = REF_CLK_FREQ / 1000000;
|
|
div_num = (new_apb * old_div) / old_apb;
|
|
if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
|
|
div_num = LEDC_DIV_NUM_HSTIMER0_V;//lowest clock possible
|
|
}
|
|
LEDC_TIMER(group, timer).conf.tick_sel = 0;
|
|
} else if(div_num < 256) {
|
|
div_num = 256;//highest clock possible
|
|
}
|
|
LEDC_TIMER(group, timer).conf.clock_divider = div_num;
|
|
LEDC_MUTEX_UNLOCK();
|
|
}
|
|
}
|
|
}
|
|
|
|
//uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num));
|
|
static void _ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk)
|
|
{
|
|
uint8_t group=(chan/8), timer=((chan/2)%4);
|
|
static bool tHasStarted = false;
|
|
if(!tHasStarted) {
|
|
tHasStarted = true;
|
|
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
|
|
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
|
|
LEDC.conf.apb_clk_sel = 1;//LS use apb clock
|
|
#if !CONFIG_DISABLE_HAL_LOCKS
|
|
_ledc_sys_lock = xSemaphoreCreateMutex();
|
|
#endif
|
|
}
|
|
LEDC_MUTEX_LOCK();
|
|
LEDC_TIMER(group, timer).conf.clock_divider = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
|
|
LEDC_TIMER(group, timer).conf.duty_resolution = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
|
|
LEDC_TIMER(group, timer).conf.tick_sel = apb_clk;//apb clock
|
|
if(group) {
|
|
LEDC_TIMER(group, timer).conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers
|
|
}
|
|
LEDC_TIMER(group, timer).conf.pause = 0;
|
|
LEDC_TIMER(group, timer).conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset.
|
|
LEDC_TIMER(group, timer).conf.rst = 0;
|
|
LEDC_MUTEX_UNLOCK();
|
|
uint32_t iarg = chan;
|
|
addApbChangeCallback((void*)iarg, _on_apb_change);
|
|
}
|
|
|
|
//max div_num 0x3FFFF (262143)
|
|
//max bit_num 0x1F (31)
|
|
static double _ledcSetupTimerFreq(uint8_t chan, double freq, uint8_t bit_num)
|
|
{
|
|
uint64_t clk_freq = getApbFrequency();
|
|
clk_freq <<= 8;//div_num is 8 bit decimal
|
|
uint32_t div_num = (clk_freq >> bit_num) / freq;
|
|
bool apb_clk = true;
|
|
if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
|
|
clk_freq /= 80;
|
|
div_num = (clk_freq >> bit_num) / freq;
|
|
if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
|
|
div_num = LEDC_DIV_NUM_HSTIMER0_V;//lowest clock possible
|
|
}
|
|
apb_clk = false;
|
|
} else if(div_num < 256) {
|
|
div_num = 256;//highest clock possible
|
|
}
|
|
_ledcSetupTimer(chan, div_num, bit_num, apb_clk);
|
|
//log_i("Fin: %f, Fclk: %uMhz, bits: %u, DIV: %u, Fout: %f",
|
|
// freq, apb_clk?80:1, bit_num, div_num, (clk_freq >> bit_num) / (double)div_num);
|
|
return (clk_freq >> bit_num) / (double)div_num;
|
|
}
|
|
|
|
static double _ledcTimerRead(uint8_t chan)
|
|
{
|
|
uint32_t div_num;
|
|
uint8_t bit_num;
|
|
bool apb_clk;
|
|
uint8_t group=(chan/8), timer=((chan/2)%4);
|
|
LEDC_MUTEX_LOCK();
|
|
div_num = LEDC_TIMER(group, timer).conf.clock_divider;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
|
|
bit_num = LEDC_TIMER(group, timer).conf.duty_resolution;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
|
|
apb_clk = LEDC_TIMER(group, timer).conf.tick_sel;//apb clock
|
|
LEDC_MUTEX_UNLOCK();
|
|
uint64_t clk_freq = 1000000;
|
|
if(apb_clk) {
|
|
clk_freq = getApbFrequency();
|
|
}
|
|
clk_freq <<= 8;//div_num is 8 bit decimal
|
|
return (clk_freq >> bit_num) / (double)div_num;
|
|
}
|
|
|
|
static void _ledcSetupChannel(uint8_t chan, uint8_t idle_level)
|
|
{
|
|
uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4);
|
|
LEDC_MUTEX_LOCK();
|
|
LEDC_CHAN(group, channel).conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3
|
|
LEDC_CHAN(group, channel).conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off.
|
|
LEDC_CHAN(group, channel).hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint
|
|
LEDC_CHAN(group, channel).conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel
|
|
LEDC_CHAN(group, channel).conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel
|
|
LEDC_CHAN(group, channel).conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel
|
|
LEDC_CHAN(group, channel).conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel.
|
|
LEDC_CHAN(group, channel).duty.duty = 0;
|
|
LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
|
|
LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
|
if(group) {
|
|
LEDC_CHAN(group, channel).conf0.low_speed_update = 1;
|
|
} else {
|
|
LEDC_CHAN(group, channel).conf0.clk_en = 0;
|
|
}
|
|
LEDC_MUTEX_UNLOCK();
|
|
}
|
|
|
|
double ledcSetup(uint8_t chan, double freq, uint8_t bit_num)
|
|
{
|
|
if(chan > 15) {
|
|
return 0;
|
|
}
|
|
double res_freq = _ledcSetupTimerFreq(chan, freq, bit_num);
|
|
_ledcSetupChannel(chan, LOW);
|
|
return res_freq;
|
|
}
|
|
|
|
void ledcWrite(uint8_t chan, uint32_t duty)
|
|
{
|
|
if(chan > 15) {
|
|
return;
|
|
}
|
|
uint8_t group=(chan/8), channel=(chan%8);
|
|
LEDC_MUTEX_LOCK();
|
|
LEDC_CHAN(group, channel).duty.duty = duty << 4;//25 bit (21.4)
|
|
if(duty) {
|
|
LEDC_CHAN(group, channel).conf0.sig_out_en = 1;//This is the output enable control bit for channel
|
|
LEDC_CHAN(group, channel).conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
|
if(group) {
|
|
LEDC_CHAN(group, channel).conf0.low_speed_update = 1;
|
|
} else {
|
|
LEDC_CHAN(group, channel).conf0.clk_en = 1;
|
|
}
|
|
} else {
|
|
LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
|
|
LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
|
if(group) {
|
|
LEDC_CHAN(group, channel).conf0.low_speed_update = 1;
|
|
} else {
|
|
LEDC_CHAN(group, channel).conf0.clk_en = 0;
|
|
}
|
|
}
|
|
LEDC_MUTEX_UNLOCK();
|
|
}
|
|
|
|
uint32_t ledcRead(uint8_t chan)
|
|
{
|
|
if(chan > 15) {
|
|
return 0;
|
|
}
|
|
return LEDC.channel_group[chan/8].channel[chan%8].duty.duty >> 4;
|
|
}
|
|
|
|
double ledcReadFreq(uint8_t chan)
|
|
{
|
|
if(!ledcRead(chan)){
|
|
return 0;
|
|
}
|
|
return _ledcTimerRead(chan);
|
|
}
|
|
|
|
double ledcWriteTone(uint8_t chan, double freq)
|
|
{
|
|
if(chan > 15) {
|
|
return 0;
|
|
}
|
|
if(!freq) {
|
|
ledcWrite(chan, 0);
|
|
return 0;
|
|
}
|
|
double res_freq = _ledcSetupTimerFreq(chan, freq, 10);
|
|
ledcWrite(chan, 0x1FF);
|
|
return res_freq;
|
|
}
|
|
|
|
double ledcWriteNote(uint8_t chan, note_t note, uint8_t octave){
|
|
const uint16_t noteFrequencyBase[12] = {
|
|
// C C# D Eb E F F# G G# A Bb B
|
|
4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902
|
|
};
|
|
|
|
if(octave > 8 || note >= NOTE_MAX){
|
|
return 0;
|
|
}
|
|
double noteFreq = (double)noteFrequencyBase[note] / (double)(1 << (8-octave));
|
|
return ledcWriteTone(chan, noteFreq);
|
|
}
|
|
|
|
void ledcAttachPin(uint8_t pin, uint8_t chan)
|
|
{
|
|
if(chan > 15) {
|
|
return;
|
|
}
|
|
pinMode(pin, OUTPUT);
|
|
pinMatrixOutAttach(pin, ((chan/8)?LEDC_LS_SIG_OUT0_IDX:LEDC_HS_SIG_OUT0_IDX) + (chan%8), false, false);
|
|
}
|
|
|
|
void ledcDetachPin(uint8_t pin)
|
|
{
|
|
pinMatrixOutDetach(pin, false, false);
|
|
}
|