502 lines
16 KiB
PHP
502 lines
16 KiB
PHP
<?php
|
|
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013 John Judy
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
//ini_set('xdebug.max_nesting_level', 0);
|
|
/**
|
|
* A PHP implementation of the Python ED25519 library
|
|
*
|
|
* @author johnj
|
|
*
|
|
* @link http://ed25519.cr.yp.to/software.html Other ED25519 implementations this is referenced from
|
|
*/
|
|
|
|
defined( 'ABSPATH' ) || exit;
|
|
|
|
class ed25519
|
|
{
|
|
public $b;
|
|
|
|
public $q;
|
|
|
|
public $l;
|
|
|
|
public $d;
|
|
|
|
public $I;
|
|
|
|
public $By;
|
|
|
|
public $Bx;
|
|
|
|
public $B;
|
|
|
|
private $gmp; // Is the GMP extension available?
|
|
|
|
public function __construct()
|
|
{
|
|
$this->b = 256;
|
|
$this->q = "57896044618658097711785492504343953926634992332820282019728792003956564819949"; //bcsub(bcpow(2, 255),19);
|
|
$this->l = "7237005577332262213973186563042994240857116359379907606001950938285454250989"; //bcadd(bcpow(2,252),27742317777372353535851937790883648493);
|
|
$this->d = "-4513249062541557337682894930092624173785641285191125241628941591882900924598840740"; //bcmul(-121665,$this->inv(121666));
|
|
$this->I = "19681161376707505956807079304988542015446066515923890162744021073123829784752"; //$this->expmod(2, bcdiv((bcsub($this->q,1)),4),$this->q);
|
|
$this->By = "46316835694926478169428394003475163141307993866256225615783033603165251855960"; //bcmul(4,$this->inv(5));
|
|
$this->Bx = "15112221349535400772501151409588531511454012693041857206046113283949847762202"; //$this->xrecover($this->By);
|
|
$this->B = array(
|
|
"15112221349535400772501151409588531511454012693041857206046113283949847762202",
|
|
"46316835694926478169428394003475163141307993866256225615783033603165251855960"
|
|
); //array(bcmod($this->Bx,$this->q),bcmod($this->By,$this->q));
|
|
|
|
$this->gmp = extension_loaded('gmp');
|
|
}
|
|
|
|
public function H($m)
|
|
{
|
|
return hash('sha512', $m, true);
|
|
}
|
|
|
|
//((n % M) + M) % M //python modulus craziness
|
|
public function pymod($x, $m)
|
|
{
|
|
if ($this->gmp) {
|
|
$mod = gmp_mod($x, $m);
|
|
if ($mod < 0) {
|
|
$mod = gmp_add($mod, $m);
|
|
}
|
|
} else {
|
|
$mod = bcmod($x, $m);
|
|
if ($mod < 0) {
|
|
$mod = bcadd($mod, $m);
|
|
}
|
|
}
|
|
|
|
return $mod;
|
|
}
|
|
|
|
public function expmod($b, $e, $m)
|
|
{
|
|
//if($e==0){return 1;}
|
|
if ($this->gmp) {
|
|
$t = gmp_powm($b, $e, $m);
|
|
if ($t < 0) {
|
|
$t = gmp_add($t, $m);
|
|
}
|
|
} else {
|
|
$t = bcpowmod($b, $e, $m);
|
|
if ($t[0] === '-') {
|
|
$t = bcadd($t, $m);
|
|
}
|
|
}
|
|
|
|
return $t;
|
|
}
|
|
|
|
public function inv($x)
|
|
{
|
|
if ($this->gmp) {
|
|
return $this->expmod($x, gmp_sub($this->q, 2), $this->q);
|
|
} else {
|
|
return $this->expmod($x, bcsub($this->q, 2), $this->q);
|
|
}
|
|
}
|
|
|
|
public function xrecover($y)
|
|
{
|
|
if ($this->gmp) {
|
|
$y2 = gmp_pow($y, 2);
|
|
$xx = gmp_mul(gmp_sub($y2, 1), $this->inv(gmp_add(gmp_mul($this->d, $y2), 1)));
|
|
$x = $this->expmod($xx, gmp_div(gmp_add($this->q, 3), 8, 0), $this->q);
|
|
if ($this->pymod(gmp_sub(gmp_pow($x, 2), $xx), $this->q) != 0) {
|
|
$x = $this->pymod(gmp_mul($x, $this->I), $this->q);
|
|
}
|
|
if (substr($x, -1)%2 != 0) {
|
|
$x = gmp_sub($this->q, $x);
|
|
}
|
|
} else {
|
|
$y2 = bcpow($y, 2);
|
|
$xx = bcmul(bcsub($y2, 1), $this->inv(bcadd(bcmul($this->d, $y2), 1)));
|
|
$x = $this->expmod($xx, bcdiv(bcadd($this->q, 3), 8, 0), $this->q);
|
|
if ($this->pymod(bcsub(bcpow($x, 2), $xx), $this->q) != 0) {
|
|
$x = $this->pymod(bcmul($x, $this->I), $this->q);
|
|
}
|
|
if (substr($x, -1)%2 != 0) {
|
|
$x = bcsub($this->q, $x);
|
|
}
|
|
}
|
|
|
|
return $x;
|
|
}
|
|
|
|
public function edwards($P, $Q)
|
|
{
|
|
if ($this->gmp) {
|
|
list($x1, $y1) = $P;
|
|
list($x2, $y2) = $Q;
|
|
$xmul = gmp_mul($x1, $x2);
|
|
$ymul = gmp_mul($y1, $y2);
|
|
$com = gmp_mul($this->d, gmp_mul($xmul, $ymul));
|
|
$x3 = gmp_mul(gmp_add(gmp_mul($x1, $y2), gmp_mul($x2, $y1)), $this->inv(gmp_add(1, $com)));
|
|
$y3 = gmp_mul(gmp_add($ymul, $xmul), $this->inv(gmp_sub(1, $com)));
|
|
|
|
return array($this->pymod($x3, $this->q), $this->pymod($y3, $this->q));
|
|
} else {
|
|
list($x1, $y1) = $P;
|
|
list($x2, $y2) = $Q;
|
|
$xmul = bcmul($x1, $x2);
|
|
$ymul = bcmul($y1, $y2);
|
|
$com = bcmul($this->d, bcmul($xmul, $ymul));
|
|
$x3 = bcmul(bcadd(bcmul($x1, $y2), bcmul($x2, $y1)), $this->inv(bcadd(1, $com)));
|
|
$y3 = bcmul(bcadd($ymul, $xmul), $this->inv(bcsub(1, $com)));
|
|
|
|
return array($this->pymod($x3, $this->q), $this->pymod($y3, $this->q));
|
|
}
|
|
}
|
|
|
|
public function scalarmult($P, $e)
|
|
{
|
|
if ($this->gmp) {
|
|
if ($e == 0) {
|
|
return array(0, 1);
|
|
}
|
|
$Q = $this->scalarmult($P, gmp_div($e, 2, 0));
|
|
$Q = $this->edwards($Q, $Q);
|
|
if (substr($e, -1)%2 == 1) {
|
|
$Q = $this->edwards($Q, $P);
|
|
}
|
|
} else {
|
|
if ($e == 0) {
|
|
return array(0, 1);
|
|
}
|
|
$Q = $this->scalarmult($P, bcdiv($e, 2, 0));
|
|
$Q = $this->edwards($Q, $Q);
|
|
if (substr($e, -1)%2 == 1) {
|
|
$Q = $this->edwards($Q, $P);
|
|
}
|
|
}
|
|
|
|
return $Q;
|
|
}
|
|
|
|
public function scalarloop($P, $e)
|
|
{
|
|
if ($this->gmp) {
|
|
$temp = array();
|
|
$loopE = $e;
|
|
while ($loopE > 0) {
|
|
array_unshift($temp, $loopE);
|
|
$loopE = gmp_div($loopE, 2, 0);
|
|
}
|
|
$Q = array();
|
|
foreach ($temp as $e) {
|
|
if ($e == 1) {
|
|
$Q = $this->edwards(array(0, 1), $P);
|
|
} elseif (substr($e, -1)%2 == 1) {
|
|
$Q = $this->edwards($this->edwards($Q, $Q), $P);
|
|
} else {
|
|
$Q = $this->edwards($Q, $Q);
|
|
}
|
|
}
|
|
} else {
|
|
$temp = array();
|
|
$loopE = $e;
|
|
while ($loopE > 0) {
|
|
array_unshift($temp, $loopE);
|
|
$loopE = bcdiv($loopE, 2, 0);
|
|
}
|
|
$Q = array();
|
|
foreach ($temp as $e) {
|
|
if ($e == 1) {
|
|
$Q = $this->edwards(array(0, 1), $P);
|
|
} elseif (substr($e, -1)%2 == 1) {
|
|
$Q = $this->edwards($this->edwards($Q, $Q), $P);
|
|
} else {
|
|
$Q = $this->edwards($Q, $Q);
|
|
}
|
|
}
|
|
}
|
|
|
|
return $Q;
|
|
}
|
|
|
|
public function bitsToString($bits)
|
|
{
|
|
$string = '';
|
|
for ($i = 0; $i < $this->b/8; $i++) {
|
|
$sum = 0;
|
|
for ($j = 0; $j < 8; $j++) {
|
|
$bit = $bits[$i*8+$j];
|
|
$sum += (int) $bit << $j;
|
|
}
|
|
$string .= chr($sum);
|
|
}
|
|
|
|
return $string;
|
|
}
|
|
|
|
public function dec2bin_i($decimal_i)
|
|
{
|
|
if ($this->gmp) {
|
|
$binary_i = '';
|
|
do {
|
|
$binary_i = substr($decimal_i, -1)%2 .$binary_i;
|
|
$decimal_i = gmp_div($decimal_i, '2', 0);
|
|
} while (gmp_cmp($decimal_i, '0'));
|
|
} else {
|
|
$binary_i = '';
|
|
do {
|
|
$binary_i = substr($decimal_i, -1)%2 .$binary_i;
|
|
$decimal_i = bcdiv($decimal_i, '2', 0);
|
|
} while (bccomp($decimal_i, '0'));
|
|
}
|
|
|
|
return ($binary_i);
|
|
}
|
|
|
|
public function encodeint($y)
|
|
{
|
|
$bits = substr(str_pad(strrev($this->dec2bin_i($y)), $this->b, '0', STR_PAD_RIGHT), 0, $this->b);
|
|
|
|
return $this->bitsToString($bits);
|
|
}
|
|
|
|
public function encodepoint($P)
|
|
{
|
|
list($x, $y) = $P;
|
|
$bits = substr(str_pad(strrev($this->dec2bin_i($y)), $this->b-1, '0', STR_PAD_RIGHT), 0, $this->b-1);
|
|
$bits .= (substr($x, -1)%2 == 1 ? '1' : '0');
|
|
|
|
return $this->bitsToString($bits);
|
|
}
|
|
|
|
public function bit($h, $i)
|
|
{
|
|
if ($this->gmp) {
|
|
return (ord($h[(int) gmp_div($i, 8, 0)]) >> substr($i, -3)%8) & 1;
|
|
} else {
|
|
return (ord($h[(int) bcdiv($i, 8, 0)]) >> substr($i, -3)%8) & 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generates the public key of a given private key
|
|
*
|
|
* @param string $sk the secret key
|
|
*
|
|
* @return string
|
|
*/
|
|
public function publickey($sk)
|
|
{
|
|
if ($this->gmp) {
|
|
$h = $this->H($sk);
|
|
$sum = 0;
|
|
for ($i = 3; $i < $this->b-2; $i++) {
|
|
$sum = gmp_add($sum, gmp_mul(gmp_pow(2, $i), $this->bit($h, $i)));
|
|
}
|
|
$a = gmp_add(gmp_pow(2, $this->b-2), $sum);
|
|
$A = $this->scalarmult($this->B, $a);
|
|
$data = $this->encodepoint($A);
|
|
} else {
|
|
$h = $this->H($sk);
|
|
$sum = 0;
|
|
for ($i = 3; $i < $this->b-2; $i++) {
|
|
$sum = bcadd($sum, bcmul(bcpow(2, $i), $this->bit($h, $i)));
|
|
}
|
|
$a = bcadd(bcpow(2, $this->b-2), $sum);
|
|
$A = $this->scalarmult($this->B, $a);
|
|
$data = $this->encodepoint($A);
|
|
}
|
|
|
|
return $data;
|
|
}
|
|
|
|
public function Hint($m)
|
|
{
|
|
if ($this->gmp) {
|
|
$h = $this->H($m);
|
|
$sum = 0;
|
|
for ($i = 0; $i < $this->b*2; $i++) {
|
|
$sum = gmp_add($sum, gmp_mul(gmp_pow(2, $i), $this->bit($h, $i)));
|
|
}
|
|
} else {
|
|
$h = $this->H($m);
|
|
$sum = 0;
|
|
for ($i = 0; $i < $this->b*2; $i++) {
|
|
$sum = bcadd($sum, bcmul(bcpow(2, $i), $this->bit($h, $i)));
|
|
}
|
|
}
|
|
|
|
return $sum;
|
|
}
|
|
|
|
public function signature($m, $sk, $pk)
|
|
{
|
|
if ($this->gmp) {
|
|
$h = $this->H($sk);
|
|
$a = gmp_pow(2, (gmp_sub($this->b, 2)));
|
|
for ($i = 3; $i < $this->b-2; $i++) {
|
|
$a = gmp_add($a, gmp_mul(gmp_pow(2, $i), $this->bit($h, $i)));
|
|
}
|
|
$r = $this->Hint(substr($h, $this->b/8, ($this->b/4-$this->b/8)).$m);
|
|
$R = $this->scalarmult($this->B, $r);
|
|
$encR = $this->encodepoint($R);
|
|
$S = $this->pymod(gmp_add($r, gmp_mul($this->Hint($encR.$pk.$m), $a)), $this->l);
|
|
} else {
|
|
$h = $this->H($sk);
|
|
$a = bcpow(2, (bcsub($this->b, 2)));
|
|
for ($i = 3; $i < $this->b-2; $i++) {
|
|
$a = bcadd($a, bcmul(bcpow(2, $i), $this->bit($h, $i)));
|
|
}
|
|
$r = $this->Hint(substr($h, $this->b/8, ($this->b/4-$this->b/8)).$m);
|
|
$R = $this->scalarmult($this->B, $r);
|
|
$encR = $this->encodepoint($R);
|
|
$S = $this->pymod(bcadd($r, bcmul($this->Hint($encR.$pk.$m), $a)), $this->l);
|
|
}
|
|
|
|
return $encR.$this->encodeint($S);
|
|
}
|
|
|
|
public function isoncurve($P)
|
|
{
|
|
if ($this->gmp) {
|
|
list($x, $y) = $P;
|
|
$x2 = gmp_pow($x, 2);
|
|
$y2 = gmp_pow($y, 2);
|
|
|
|
return $this->pymod(gmp_sub(gmp_sub(gmp_sub($y2, $x2), 1), gmp_mul($this->d, gmp_mul($x2, $y2))), $this->q) == 0;
|
|
} else {
|
|
list($x, $y) = $P;
|
|
$x2 = bcpow($x, 2);
|
|
$y2 = bcpow($y, 2);
|
|
|
|
return $this->pymod(bcsub(bcsub(bcsub($y2, $x2), 1), bcmul($this->d, bcmul($x2, $y2))), $this->q) == 0;
|
|
}
|
|
}
|
|
|
|
public function decodeint($s)
|
|
{
|
|
if ($this->gmp) {
|
|
$sum = 0;
|
|
for ($i = 0; $i < $this->b; $i++) {
|
|
$sum = gmp_add($sum, gmp_mul(gmp_pow(2, $i), $this->bit($s, $i)));
|
|
}
|
|
} else {
|
|
$sum = 0;
|
|
for ($i = 0; $i < $this->b; $i++) {
|
|
$sum = bcadd($sum, bcmul(bcpow(2, $i), $this->bit($s, $i)));
|
|
}
|
|
}
|
|
|
|
return $sum;
|
|
}
|
|
|
|
/*
|
|
* def decodepoint(s):
|
|
y = sum(2**i * bit(s,i) for i in range(0,b-1))
|
|
x = xrecover(y)
|
|
if x & 1 != bit(s,b-1): x = q-x
|
|
P = [x,y]
|
|
if not isoncurve(P): raise Exception("decoding point that is not on curve")
|
|
return P
|
|
|
|
*/
|
|
public function decodepoint($s)
|
|
{
|
|
if ($this->gmp) {
|
|
$y = 0;
|
|
for ($i = 0; $i < $this->b-1; $i++) {
|
|
$y = gmp_add($y, gmp_mul(gmp_pow(2, $i), $this->bit($s, $i)));
|
|
}
|
|
$x = $this->xrecover($y);
|
|
if (substr($x, -1)%2 != $this->bit($s, $this->b-1)) {
|
|
$x = gmp_sub($this->q, $x);
|
|
}
|
|
$P = array($x, $y);
|
|
if (!$this->isoncurve($P)) {
|
|
throw new \Exception("Decoding point that is not on curve");
|
|
}
|
|
} else {
|
|
$y = 0;
|
|
for ($i = 0; $i < $this->b-1; $i++) {
|
|
$y = bcadd($y, bcmul(bcpow(2, $i), $this->bit($s, $i)));
|
|
}
|
|
$x = $this->xrecover($y);
|
|
if (substr($x, -1)%2 != $this->bit($s, $this->b-1)) {
|
|
$x = bcsub($this->q, $x);
|
|
}
|
|
$P = array($x, $y);
|
|
if (!$this->isoncurve($P)) {
|
|
throw new \Exception("Decoding point that is not on curve");
|
|
}
|
|
}
|
|
|
|
return $P;
|
|
}
|
|
|
|
public function checkvalid($s, $m, $pk)
|
|
{
|
|
if (strlen($s) != $this->b/4) {
|
|
throw new \Exception('Signature length is wrong');
|
|
}
|
|
if (strlen($pk) != $this->b/8) {
|
|
throw new \Exception('Public key length is wrong: '.strlen($pk));
|
|
}
|
|
$R = $this->decodepoint(substr($s, 0, $this->b/8));
|
|
try {
|
|
$A = $this->decodepoint($pk);
|
|
} catch (\Exception $e) {
|
|
return false;
|
|
}
|
|
$S = $this->decodeint(substr($s, $this->b/8, $this->b/4));
|
|
$h = $this->Hint($this->encodepoint($R).$pk.$m);
|
|
|
|
return $this->scalarmult($this->B, $S) == $this->edwards($R, $this->scalarmult($A, $h));
|
|
}
|
|
|
|
// The code below is by the Monero-Integrations team
|
|
|
|
public function scalarmult_base($e)
|
|
{
|
|
if ($this->gmp) {
|
|
if ($e == 0) {
|
|
return array(0, 1);
|
|
}
|
|
$Q = $this->scalarmult($this->B, gmp_div($e, 2, 0));
|
|
$Q = $this->edwards($Q, $Q);
|
|
if (substr($e, -1)%2 == 1) {
|
|
$Q = $this->edwards($Q, $this->B);
|
|
}
|
|
} else {
|
|
if ($e == 0) {
|
|
return array(0, 1);
|
|
}
|
|
$Q = $this->scalarmult($this->B, bcdiv($e, 2, 0));
|
|
$Q = $this->edwards($Q, $Q);
|
|
if (substr($e, -1)%2 == 1) {
|
|
$Q = $this->edwards($Q, $this->B);
|
|
}
|
|
}
|
|
|
|
return $Q;
|
|
}
|
|
}
|