opencom-lte/Mechanical/OpenSCAD/Enclosure.scad
2023-09-29 09:48:29 +01:00

363 lines
15 KiB
OpenSCAD

// Parametric Expansion Card
// An OpenSCAD implementation of a basic enclosure of an Expansion Card for
// use with Framework products like the Framework Laptop.
//
// See https://frame.work for more information about Framework products and
// additional documentation around Expansion Cards.
// Parametric Expansion Card © 2021 by Nirav Patel at Framework Computer LLC
// is licensed under Attribution 4.0 International.
// To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
// The basic dimensions of an Expansion Card
base = [30.0, 32.0, 6.8];
// The extension for the SMA connectors & EG95
base_ext = [40, 20.2, 16.5];
// The dimensions of the NSCCP sim holder
sim = [13.5, 13, 1.37];
bay = [12, 8.95, 0.92];
// The default wall thickness
side_wall = 1.5;
// Size and location of the typical PCB
pcb_gap = 0.5;
pcb = [26.0, 30.0, 0.8];
pcb_h = 3.05;
// USB-C plug dimensions
usb_c_r = 1.315;
usb_c_w = 5.86+usb_c_r*2;
usb_c_h = 2.2;
rail_h = 4.25; // to top of rail
// Boss locations matching the other Framework Expansion Cards
boss_inc_x = 4.2;
boss_r = 1.5;
boss_inc_y = 18.5+boss_r;
boss_ext_y = 8.57;
boss_ext_x = 4;
boss_ext_r = 2.5;
boss_ext_inner = 2.1;
boss_ext_top_y = 6;
lid_boss_r = 1.05;
lid_wall_thickness = 3+side_wall;
gap = 0.25;
sma_height = 11.28;
sma = 10.035;
hollow_bottom_z = 0.7;
bottom_thickness = hollow_bottom_z+0.2;
ext_screw_hole = 2.5+side_wall;
ledge_cut = 0.6;
ledge_cut_d = 3.2;
led_guide = [1.2, 10.65];
led_guide_stopper = [1.5, 1,];
// The rail cutout in the sides of the card
module rail(make_printable) {
rail_depth = 0.81;
rail_flat_h = 0.32;
mirror([0, 1, 0]) {
// The rail that holds the card
bottom_angle = 43.54;
difference() {
union() {
translate([rail_depth, 0, -rail_flat_h]) rotate([0, 180+bottom_angle, 0]) cube([2, base[1]-side_wall, 2]);
translate([-2+rail_depth, 0, -rail_flat_h]) cube([2, base[1]-side_wall, rail_flat_h]);
}
translate([-5+rail_depth, 0, 0]) cube([5, base[1]-side_wall, 5]);
}
pyramid_b = 3.23*sqrt(2);
pyramid_t = 1.75*sqrt(2);
pyramid_h = 1.0;
pyramid_inset = 1.3+0.5;
pyramid_step = 3.06;
// The ramps to make slotting into the latch smooth
translate([-1.75/2+pyramid_inset, 0, -1.75/2]) rotate([-90, 0, 0]) rotate([0, 0, 45]) {
cylinder(r1 = pyramid_b/2, r2 = pyramid_t/2, h = pyramid_h, $fn=4);
cylinder(r = pyramid_t/2, h = pyramid_step+pyramid_h, $fn=4);
translate([-0.1, 0.1, 0])cylinder(r = pyramid_t/2, h = pyramid_step+pyramid_h, $fn=4);
}
latch_l = 2.67;
latch_d = pyramid_inset;
latch_h = 2.85;
latch_wall = 1.39;
// The pocket that the latch bar drops into, including a 45 degree cut for printability
translate([0, latch_wall, -latch_h]) cube([latch_d, latch_l, latch_h]);
if (make_printable) {
translate([latch_d, latch_wall+latch_l, -latch_h]) rotate([0, 0, -180+45]) translate([0, -latch_l, 0]) cube([latch_d*2, latch_l, latch_h]);
}
}
}
// A simple cylinder cutout to fillet edges
module fillet(radius, length) {
translate([length, 0, 0]) rotate([0, -90, 0]) difference() {
cube([radius, radius, length]);
translate([radius, radius, -1]) cylinder(h = length+2, r = radius, $fn = 64);
}
}
// The cutout for the USB-C plug
module usb_c_cutout(open_top) {
// The plug is "pushed in" by an extra 0.6 to account for 3d printing tolerances
translate([-usb_c_w/2+usb_c_r, 7-10+0.6, usb_c_r]) rotate([-90, 0, 0]) union() {
translate([0, usb_c_r, 0]) cylinder(r = usb_c_r, h = 10, $fn = 64);
translate([usb_c_w-usb_c_r*2, usb_c_r, 0]) cylinder(r = usb_c_r, h = 10, $fn = 64);
cube([usb_c_w-usb_c_r*2, usb_c_r*2, 10]);
// Cutout for the pin side of the shell that expands out
translate([0, usb_c_r, 0]) cylinder(r2 = usb_c_r, r1 = 3.84/2, h = 10-7.7, $fn = 64);
translate([usb_c_w-usb_c_r*2, usb_c_r, 0]) cylinder(r2 = usb_c_r, r1 = 3.84/2, h = 10-7.7, $fn = 64);
translate([usb_c_w/2-usb_c_r, usb_c_r, 0]) scale([1.8, 1, 1]) rotate([0, 0, 45]) cylinder(r2 = usb_c_r*sqrt(2), r1 = 3.84/2*sqrt(2), h = 10-7.7, $fn = 4);
// If the card drops in from the top rather than sliding in from the front,
// cut out a slot for the USB-C plug to drop into.
if (open_top) {
translate([-usb_c_r, -10+usb_c_r, 0]) cube([usb_c_w, 10, 10]);
}
}
}
// Quarter section of a sphere, used as a clip
module qsphere(radius = 1) {
difference() {
sphere(r = radius, $fn = 32);
translate([-radius-1, -radius-1, -radius]) cube([radius*2+2, radius*2+2, radius]);
translate([0, -radius-1, -radius-1]) cube([radius, radius*2+2, radius*2+2]);
}
}
// The screw boss for the PCB, optionally with space for a threaded insert
module boss(radius, height = pcb_h, inner_size, make_printable) {
difference() {
cylinder(r = radius, h = height, $fn = 64);
translate([0, 0, side_wall]) cylinder(r = inner_size/2, h = pcb_h, $fn = 64);
}
}
module sma_hole() {
radius = 3.15;
rotate([90,0,0]) cylinder(h = side_wall,r = radius, $fn = 64);
}
// make expansion card lid
module expansion_card_lid() {
lower_lid_z = 0.6;
ext_side_extension = 5;
difference() {
union() {
// makes upper lid
difference() {
translate([-side_wall*2-gap, -base_ext[1]+side_wall+gap, base_ext[2]-side_wall]) cube([base_ext[0]-side_wall*2-gap*2, base_ext[1]-side_wall*2-gap*2, side_wall]);
translate([-0.5,-16.4,8]) led_cylinder(); // hollow for D2 LED cylinder
translate([30.55,-16.4,8]) led_cylinder(); // hollow for D3 LED cylinder
}
// joins them together
translate([side_wall+gap, -side_wall, base[2]-lower_lid_z]) cube([base[0]-side_wall*2-gap*2, side_wall, base_ext[2]-base[2]+gap*2+0.1]);
translate([side_wall+gap,-gap-side_wall,base_ext[2]-side_wall]) cube([base[0]-side_wall*2-gap*2, side_wall, side_wall]);
// join on sma cover
translate([-side_wall*2-gap,-base_ext[1],base_ext[2]-side_wall]) cube([base_ext[0]-side_wall*2-gap*2, side_wall+gap, side_wall]);
// make sma cover half
translate([-side_wall*2-gap, -base_ext[1], sma_height]) cube ([base_ext[0]-side_wall*2-gap*2, side_wall, base_ext[2]-sma_height]);
// add screw holder to lid
difference() {
translate([-3.25,-base_ext[2]-side_wall-gap*3,sma_height]) cube([lid_wall_thickness, base_ext[2]+gap*2, base_ext[2]-sma_height-side_wall]);
rotate([0,90,0]) translate([-base_ext[2]+3,-6,-3.25]) cylinder(r = lid_boss_r, h = 3, $fn = 64);
translate([-0.5,-16.4,8]) led_cylinder(); // hollow for D2 LED cylinder
}
difference() {
translate([base_ext[0]-3.25*2-side_wall*3-gap,-base_ext[2]-side_wall-gap*3,sma_height]) cube([lid_wall_thickness, base_ext[2]+gap*2, base_ext[2]-sma_height-side_wall]);
rotate([0,90,0]) translate([-base_ext[2]+3,-6,base_ext[0]-2.5*2-side_wall*3-gap]) cylinder(r = lid_boss_r, h = 3, $fn = 64);
translate([30.55,-16.4,8]) led_cylinder(); // hollow for D3 LED cylinder
}
}
// make sma holes
translate([sma-side_wall*2, -base_ext[2]-side_wall-side_wall/2+0.05, sma_height]) sma_hole();
translate([base_ext[0]-sma-side_wall*4-gap*4, -base_ext[2]-side_wall-side_wall/2+0.05, sma_height]) sma_hole();
}
}
// A basic, printable Expansion Card enclosure
// open_end - A boolean to make the end of the card that is exposed when inserted open
// make_printable - Adds ribs to improve printability
// pcb_mount - The method the PCB is held in with, "boss" for self-threading screws,
// "boss_insert" for fastener with a threaded insert,
// "clip" for a fastener-less clip, or
// "" for no PCB mounting structure
module expansion_card_base(open_end, make_printable, pcb_mount="boss") {
// Hollowing of the inside
extra = 0.1;
inner = [base[0]-side_wall*2, base[1]-side_wall*2, base[2]-side_wall+extra];
ledge_fillet_r = 0.3;
notch_l = 3.0;
difference() {
cube(base);
difference() {
notch = 1.0;
notch_h = 3.8;
// The main hollow
translate([side_wall, 0, side_wall]) cube([inner[0], inner[1]+side_wall, inner[2]]);
// Extra wall thickness where the latch cutouts are
translate([side_wall, inner[1]+side_wall-notch_l, side_wall+notch_h/2]) rotate([0, 0, -90]) rotate([0, 90, 0]);
translate([side_wall, inner[1]+side_wall-notch_l, side_wall]) cube([notch, notch_l, notch_h]);
translate([inner[0]+side_wall, inner[1]+side_wall-notch_l, side_wall+notch_h/2]) rotate([0, 0, 180]) rotate([0, 90, 0]);
translate([inner[0]+side_wall-notch, inner[1]+side_wall-notch_l, side_wall]) cube([notch, notch_l, notch_h]);
}
// cutout for sim card access
translate([0,bay[1]-sim[1]/2+2.53,1.67]) cube(bay);
// The rounded front edge to match the laptop
edge_r = 0.8;
// The USB-C plug cutout
translate([base[0]/2, base[1], usb_c_r+usb_c_h]) usb_c_cutout(!open_end);
// The sliding rails
translate([0, base[1], rail_h]) rail(make_printable);
translate([base[0], base[1], rail_h]) mirror([1, 0, 0]) rail(make_printable);
// Cut out the end of what is normally the aluminum cover
translate([0, base[1]-ledge_cut_d, 0]) cube([base[0], ledge_cut_d, ledge_cut]);
// hollow bottom to provide room for back of board
translate([side_wall,-notch_l,-hollow_bottom_z+1.5]) cube([base[0]-side_wall*2, base[1]-side_wall, hollow_bottom_z]);
}
difference() {
// add extra bottom thickness to provide room for back of board
translate([0,0,-hollow_bottom_z]) cube([base[0], base[1]-ledge_cut_d, bottom_thickness]);
// engrave LES logo into bottom
translate([base[0]-3, 17, -0.8]) rotate([0,180,0]) linear_extrude(height=bottom_thickness, center=true) {
offset(0.01) import("LES.svg"); // the offset fixes a weird error about the svg's mesh being incomplete
}
// The fillets on the aluminum cover
translate([base[0], base[1]-ledge_cut_d, -ledge_cut/2-hollow_bottom_z+0.3]) rotate([0, 0, 180]) fillet(ledge_cut/2, base[0]);
}
if (pcb_mount == "boss" || pcb_mount == "boss_insert") {
// Add the screw bosses
translate([boss_inc_x, boss_inc_y, 0]) boss(boss_r, pcb_h, 0, make_printable); // left int screwhole
translate([base[0]-boss_inc_x, boss_inc_y, 0]) boss(boss_r, pcb_h, 0, make_printable); // right int screwhole
} else if (pcb_mount == "clip") {
clip_w = 1.5;
clip_gap = 0.5;
translate([boss_inc_x-boss_r, boss_inc_y-boss_r, 0]) {
cube([boss_r*2, boss_r*2, pcb_h]);
if (make_printable)
translate([boss_r, boss_r*2, 0]) rib(boss_r*2, pcb_h);
translate([0, boss_r-clip_w, pcb_h+pcb[2]+clip_gap]) rotate([0, 0, 180]) qsphere(clip_w);
}
translate([base[0]-boss_inc_x-boss_r, boss_inc_y-boss_r, 0]) {
cube([boss_r*2, boss_r*2, pcb_h]);
if (make_printable)
translate([boss_r, boss_r*2, 0]) rib(boss_r*2, pcb_h);
translate([boss_r*2, boss_r-clip_w, pcb_h+pcb[2]+clip_gap]) qsphere(clip_w);
}
}
}
module expansion_card_ext(make_printable, pcb_mount="boss_insert") {
// Hollowing of the inside
extra = 0.1;
inner = [base_ext[0]-side_wall*2, base_ext[1]-side_wall*2, base_ext[2]-side_wall+extra];
cutout = [base[0]-side_wall*2, base_ext[1]-side_wall*2, base_ext[2]-side_wall+extra];
sma_cutout = [base_ext[0]-side_wall*2, base_ext[1]-side_wall*2, base_ext[2]];
translate([boss_ext_x, boss_ext_y, 0]) boss(boss_ext_r, pcb_h, boss_ext_inner, make_printable); // left ext screwhole
translate([base_ext[0]-boss_ext_x, boss_ext_y, 0]) boss(boss_ext_r, pcb_h, boss_ext_inner, make_printable); // right ext screwhole
difference() {
cube(base_ext);
// cutout to bring base and ext card together
// not sure why it needs 0.5mm added, rounding error maybe? <---- FIX THIS
translate([base[0]-23.5, 5, side_wall]) cube([cutout[0], cutout[1], cutout[2]]);
// half cut out for sma connectors
translate([side_wall, 0-1, sma_height]) cube([sma_cutout[0], sma_cutout[1], sma_cutout[2]]);
// sma holes
translate([sma+side_wall+gap*2, side_wall, sma_height]) sma_hole();
translate([base_ext[0]-sma-side_wall-gap*2, side_wall, sma_height]) sma_hole();
// screw holes
translate([0,base_ext[1]-boss_ext_top_y,base_ext[2]-boss_r-1.5]) rotate([0,90,0]) cylinder(r = 1, h = side_wall, $fn = 64);
translate([base_ext[0]-side_wall,base_ext[1]-boss_ext_top_y,base_ext[2]-boss_r-1.5]) rotate([0,90,0]) cylinder(r = 1, h = side_wall, $fn = 64);
difference() {
// The main hollow
translate([side_wall, side_wall, side_wall]) cube([inner[0], inner[1], inner[2]]);
}
// hollow bottom to provide room for back of board
translate([(base_ext[0]-base[0])/2+side_wall,base_ext[1]-base_ext[1]/2+gap*2,-hollow_bottom_z+1.5]) cube([base[0]-side_wall*2, base_ext[1]/2, hollow_bottom_z]);
}
difference() {
// add extra bottom thickness to provide room for back of board
translate([(base_ext[0]-base[0])/2,base_ext[1]-base_ext[1]/2+side_wall-1,-hollow_bottom_z]) cube([base[0], (base_ext[1]/2)-side_wall+1, hollow_bottom_z]);
translate([5, base_ext[1]-base_ext[1]/2+side_wall-0.001-1, -ledge_cut/2-hollow_bottom_z+0.3]) fillet(ledge_cut/2, base[0]);
}
}
module sim_holder() {
difference() {
cube(sim);
translate([0,bay[1]-sim[1]/2+1,0]) cube(bay);
}
}
module led_cylinder(stopper) {
if (stopper) { // if a stopper should be inserted
cylinder(h = led_guide[1], r = led_guide[0], $fn = 64);
translate([0,0,led_guide[1]-led_guide_stopper[1]-(base_ext[2]-sma_height)+0.03]) cylinder(h = led_guide_stopper[1], r = led_guide_stopper[0], $fn = 64);
}
else {
cylinder(h = led_guide[1], r = led_guide[0], $fn = 64);
}
}
translate([base_ext[0]-6.45-side_wall*2, -base[1]-base_ext[1]+side_wall*2+0.8, pcb_h+2.75]) led_cylinder(true); // D2 LED column
translate([-0.5, -base[1]-base_ext[1]+side_wall*2+0.8, pcb_h+2.75]) led_cylinder(true); // D3 LED column
translate([0, -base[1], 0]) expansion_card_base(open_end = false, make_printable = true, pcb_mount="boss");
translate([-base_ext[0]+base[0]+5, -base_ext[1]-base[1], 0]) expansion_card_ext(make_printable = true, pcb_mount="boss");
//translate([0, -32, 0]) expansion_card_lid();
//translate([-128.75, 95.6, pcb_h]) import("PCB.stl");
translate([2, -30.48, 1.68]) sim_holder();