opencom_xl_firmware/sx126x.cpp

987 lines
22 KiB
C++
Raw Normal View History

// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2023 by Mark Qvist
// Obviously still under the MIT license.
2024-02-10 17:13:52 +01:00
#include "Boards.h"
#if MODEM == SX1262
#include "sx126x.h"
#if MCU_VARIANT == MCU_ESP32
2024-02-10 17:13:52 +01:00
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "soc/rtc_wdt.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_6X 0x86
#define OP_SLEEP_6X 0x84
#define OP_STANDBY_6X 0x80
#define OP_TX_6X 0x83
#define OP_RX_6X 0x82
#define OP_PA_CONFIG_6X 0x95
#define OP_SET_IRQ_FLAGS_6X 0x08 // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_6X 0x02
#define OP_GET_IRQ_STATUS_6X 0x12
#define OP_RX_BUFFER_STATUS_6X 0x13
#define OP_PACKET_STATUS_6X 0x14 // get snr & rssi of last packet
#define OP_CURRENT_RSSI_6X 0x15
#define OP_MODULATION_PARAMS_6X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_6X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_6X 0xC0
#define OP_TX_PARAMS_6X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_6X 0x8A
#define OP_BUFFER_BASE_ADDR_6X 0x8F
#define OP_READ_REGISTER_6X 0x1D
#define OP_WRITE_REGISTER_6X 0x0D
#define OP_DIO3_TCXO_CTRL_6X 0x97
#define OP_DIO2_RF_CTRL_6X 0x9D
#define OP_CAD_PARAMS 0x88
#define OP_CALIBRATE_6X 0x89
#define OP_RX_TX_FALLBACK_MODE_6X 0x93
#define OP_REGULATOR_MODE_6X 0x96
#define OP_CALIBRATE_IMAGE_6X 0x98
#define MASK_CALIBRATE_ALL 0x7f
#define IRQ_TX_DONE_MASK_6X 0x01
#define IRQ_RX_DONE_MASK_6X 0x02
#define IRQ_HEADER_DET_MASK_6X 0x10
#define IRQ_PREAMBLE_DET_MASK_6X 0x04
#define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40
#define IRQ_ALL_MASK_6X 0b0100001111111111
#define MODE_LONG_RANGE_MODE_6X 0x01
#define OP_FIFO_WRITE_6X 0x0E
#define OP_FIFO_READ_6X 0x1E
#define REG_OCP_6X 0x08E7
#define REG_LNA_6X 0x08AC // no agc in sx1262
#define REG_SYNC_WORD_MSB_6X 0x0740
#define REG_SYNC_WORD_LSB_6X 0x0741
#define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN_6X 0x0819
#define MODE_TCXO_3_3V_6X 0x07
#define MODE_TCXO_3_0V_6X 0x06
#define MODE_TCXO_2_7V_6X 0x06
#define MODE_TCXO_2_4V_6X 0x06
#define MODE_TCXO_2_2V_6X 0x03
#define MODE_TCXO_1_8V_6X 0x02
#define MODE_TCXO_1_7V_6X 0x01
#define MODE_TCXO_1_6V_6X 0x00
#define MODE_STDBY_RC_6X 0x00
#define MODE_STDBY_XOSC_6X 0x01
#define MODE_FALLBACK_STDBY_RC_6X 0x20
#define MODE_IMPLICIT_HEADER 0x01
#define MODE_EXPLICIT_HEADER 0x00
#define SYNC_WORD_6X 0x1424
#define XTAL_FREQ_6X (double)32000000
#define FREQ_DIV_6X (double)pow(2.0, 25.0)
#define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X)
2024-02-10 17:13:52 +01:00
#if defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx126x::sx126x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _busy(LORA_DEFAULT_BUSY_PIN), _rxen(LORA_DEFAULT_RXEN_PIN),
_frequency(0),
_txp(0),
_sf(0x07),
_bw(0x04),
_cr(0x01),
_ldro(0x00),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(1),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_preinit_done(false),
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
bool sx126x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
#if BOARD_MODEL == BOARD_RNODE_NG_22 || BOARD_MODEL == BOARD_HELTEC32_V3
2024-02-10 17:13:52 +01:00
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#else
SPI.begin();
#endif
// check version (retry for up to 2 seconds)
2024-02-13 12:56:14 +01:00
// TODO: Actually read version registers, not syncwords
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB_6X);
synclsb = readRegister(REG_SYNC_WORD_LSB_6X);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx126x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_6X, address, 0x00);
}
void sx126x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_6X, address, value);
}
uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_6X) {
SPI.transfer(0x00);
}
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx126x::rxAntEnable()
{
if (_rxen != -1) {
digitalWrite(_rxen, HIGH);
}
}
void sx126x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_6X;
executeOpcode(OP_PACKET_TYPE_6X, &mode, 1);
}
void sx126x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
}
void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_6X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_6X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
// low data rate toggle
buf[3] = ldro;
// unused params in LoRa mode
buf[4] = 0x00;
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8);
}
void sx126x::setPacketParams(long preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble & 0xFF00) >> 8);
buf[1] = uint8_t((preamble & 0x00FF));
buf[2] = headermode;
buf[3] = length;
buf[4] = crc;
// standard IQ setting (no inversion)
buf[5] = 0x00;
// unused params
buf[6] = 0x00;
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS_6X, buf, 9);
}
2024-02-13 12:56:14 +01:00
void sx126x::reset(void) {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
2024-02-13 12:56:14 +01:00
}
void sx126x::calibrate(void) {
// Put in STDBY_RC mode before calibration
uint8_t mode_byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &mode_byte, 1);
// calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = MASK_CALIBRATE_ALL;
executeOpcode(OP_CALIBRATE_6X, &calibrate, 1);
delay(5);
waitOnBusy();
}
void sx126x::calibrate_image(long frequency) {
uint8_t image_freq[2] = {0};
if (frequency >= 430E6 && frequency <= 440E6) {
image_freq[0] = 0x6B;
image_freq[1] = 0x6F;
}
else if (frequency >= 470E6 && frequency <= 510E6) {
image_freq[0] = 0x75;
image_freq[1] = 0x81;
}
else if (frequency >= 779E6 && frequency <= 787E6) {
image_freq[0] = 0xC1;
image_freq[1] = 0xC5;
}
else if (frequency >= 863E6 && frequency <= 870E6) {
image_freq[0] = 0xD7;
image_freq[1] = 0xDB;
}
else if (frequency >= 902E6 && frequency <= 928E6) {
image_freq[0] = 0xE1;
image_freq[1] = 0xE9;
}
executeOpcode(OP_CALIBRATE_IMAGE_6X, image_freq, 2);
waitOnBusy();
}
2024-02-13 12:56:14 +01:00
int sx126x::begin(long frequency)
{
reset();
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
2024-02-11 20:02:17 +01:00
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
}
calibrate();
calibrate_image(frequency);
2024-02-11 20:02:17 +01:00
enableTCXO();
2024-02-11 20:02:17 +01:00
loraMode();
standby();
2024-02-11 20:02:17 +01:00
// Set sync word
setSyncWord(SYNC_WORD_6X);
#if DIO2_AS_RF_SWITCH
// enable dio2 rf switch
uint8_t byte = 0x01;
executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1);
#endif
rxAntEnable();
setFrequency(frequency);
// set output power to 2 dBm
setTxPower(2);
enableCrc();
// set LNA boost
writeRegister(REG_LNA_6X, 0x96);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
void sx126x::end()
{
// put in sleep mode
sleep();
// stop SPI
SPI.end();
_preinit_done = false;
}
int sx126x::beginPacket(int implicitHeader)
{
standby();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx126x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_6X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2);
return 1;
}
uint8_t sx126x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if ((buf[1] & IRQ_PREAMBLE_DET_MASK_6X) != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X;
}
if ((buf[1] & IRQ_HEADER_DET_MASK_6X) != 0) {
byte = byte | 0x02 | 0x04;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2);
return byte;
}
uint8_t sx126x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
return byte;
}
int ISR_VECT sx126x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
int rssi = -(int(byte)) / 2;
return rssi;
}
uint8_t sx126x::packetRssiRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[2];
}
int ISR_VECT sx126x::packetRssi() {
// may need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx126x::packetSnrRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[1];
}
float ISR_VECT sx126x::packetSnr() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx126x::packetFrequencyError()
{
// todo: implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx126x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx126x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx126x::available()
{
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2);
return buf[0] - _packetIndex;
}
int ISR_VECT sx126x::read()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx126x::peek()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx126x::flush()
{
}
void sx126x::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_6X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx126x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx126x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
if (_rxen != -1) {
rxAntEnable();
}
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_6X, mode, 3);
}
void sx126x::standby()
{
// STDBY_XOSC
uint8_t byte = MODE_STDBY_XOSC_6X;
// STDBY_RC
// uint8_t byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &byte, 1);
}
void sx126x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_6X, &byte, 1);
}
void sx126x::enableTCXO() {
#if HAS_TCXO
#if BOARD_MODEL == BOARD_RAK4630 || BOARD_MODEL == BOARD_HELTEC32_V3
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
2024-02-13 17:26:25 +01:00
#elif BOARD_MODEL == BOARD_RNODE_NG_22
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#endif
executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4);
#endif
}
// TODO: Once enabled, SX1262 needs a complete reset to disable TCXO
void sx126x::disableTCXO() { }
void sx126x::setTxPower(int level, int outputPin) {
// currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04; // PADutyCycle needs to be 0x04 to achieve 22dBm output, but can be lowered for better efficiency at lower outputs
pa_buf[1] = 0x07; // HPMax at 0x07 is maximum supported for SX1262
pa_buf[2] = 0x00; // DeviceSel 0x00 for SX1262 (0x01 for SX1261)
pa_buf[3] = 0x01; // PALut always 0x01 (reserved according to datasheet)
executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power
if (level > 22) { level = 22; }
else if (level < -9) { level = -9; }
writeRegister(REG_OCP_6X, 0x38); // 160mA limit, overcurrent protection
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0x02; // PA ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2);
_txp = level;
}
uint8_t sx126x::getTxPower() {
return _txp;
}
void sx126x::setFrequency(long frequency) {
_frequency = frequency;
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_6X, buf, 4);
}
uint32_t sx126x::getFrequency() {
// we can't read the frequency on the sx1262 / 80
uint32_t frequency = _frequency;
return frequency;
}
void sx126x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf;
handleLowDataRate();
setModulationParams(sf, _bw, _cr, _ldro);
}
long sx126x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
return 0;
}
void sx126x::handleLowDataRate(){
if ( long( (1<<_sf) / (getSignalBandwidth()/1000)) > 16) {
_ldro = 0x01;
} else {
_ldro = 0x00;
}
}
void sx126x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1262 can do here
}
void sx126x::setSignalBandwidth(long sbw)
{
if (sbw <= 7.8E3) {
_bw = 0x00;
} else if (sbw <= 10.4E3) {
_bw = 0x08;
} else if (sbw <= 15.6E3) {
_bw = 0x01;
} else if (sbw <= 20.8E3) {
_bw = 0x09;
} else if (sbw <= 31.25E3) {
_bw = 0x02;
} else if (sbw <= 41.7E3) {
_bw = 0x0A;
} else if (sbw <= 62.5E3) {
_bw = 0x03;
} else if (sbw <= 125E3) {
_bw = 0x04;
} else if (sbw <= 250E3) {
_bw = 0x05;
} else /*if (sbw <= 250E3)*/ {
_bw = 0x06;
}
handleLowDataRate();
setModulationParams(_sf, _bw, _cr, _ldro);
optimizeModemSensitivity();
}
void sx126x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
_cr = cr;
setModulationParams(_sf, _bw, cr, _ldro);
}
void sx126x::setPreambleLength(long length)
{
_preambleLength = length;
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::setSyncWord(uint16_t sw)
{
// TODO: Fix
// writeRegister(REG_SYNC_WORD_MSB_6X, (sw & 0xFF00) >> 8);
// writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF);
writeRegister(REG_SYNC_WORD_MSB_6X, 0x14);
writeRegister(REG_SYNC_WORD_LSB_6X, 0x24);
}
void sx126x::enableCrc()
{
_crcMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx126x::random()
{
return readRegister(REG_RANDOM_GEN_6X);
}
void sx126x::setPins(int ss, int reset, int dio0, int busy, int rxen)
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
}
void sx126x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx126x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx126x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::implicitHeaderMode()
{
_implicitHeaderMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx126x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) {
// received a packet
_packetIndex = 0;
// read packet length
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int packetLength = rxbuf[0];
if (_onReceive) {
_onReceive(packetLength);
}
}
// else {
// Serial.println("CRCE");
// Serial.println(buf[0]);
// Serial.println(buf[1]);
// }
}
void ISR_VECT sx126x::onDio0Rise()
{
sx126x_modem.handleDio0Rise();
}
sx126x sx126x_modem;
#endif