opencom_xl_firmware/RNode_Firmware.ino

601 lines
15 KiB
Arduino
Raw Normal View History

2018-12-01 19:31:51 +01:00
#include <Arduino.h>
2018-04-05 18:10:42 +02:00
#include <SPI.h>
#include "Utilities.h"
2018-04-05 18:10:42 +02:00
void setup() {
// Seed the PRNG
randomSeed(analogRead(0));
// Initialise serial communication
Serial.begin(serial_baudrate);
while (!Serial);
// Configure input and output pins
pinMode(pin_led_rx, OUTPUT);
pinMode(pin_led_tx, OUTPUT);
2018-06-27 10:22:44 +02:00
// Initialise buffers
2018-04-05 18:10:42 +02:00
memset(pbuf, 0, sizeof(pbuf));
memset(sbuf, 0, sizeof(sbuf));
memset(cbuf, 0, sizeof(cbuf));
2018-06-27 10:22:44 +02:00
#if QUEUE_SIZE > 0
memset(qbuf, 0, sizeof(qbuf));
memset(queued_lengths, 0, sizeof(queued_lengths));
#endif
2018-04-05 18:10:42 +02:00
// Set chip select, reset and interrupt
// pins for the LoRa module
LoRa.setPins(pin_cs, pin_reset, pin_dio);
// Validate board health, EEPROM and config
validateStatus();
2018-04-05 18:10:42 +02:00
}
bool startRadio() {
update_radio_lock();
if (!radio_online) {
if (!radio_locked && hw_ready) {
2018-04-05 18:10:42 +02:00
if (!LoRa.begin(lora_freq)) {
// The radio could not be started.
// Indicate this failure over both the
// serial port and with the onboard LEDs
kiss_indicate_error(ERROR_INITRADIO);
led_indicate_error(0);
} else {
radio_online = true;
setTXPower();
setBandwidth();
setSpreadingFactor();
2018-04-26 10:34:39 +02:00
setCodingRate();
2018-04-05 18:10:42 +02:00
getFrequency();
LoRa.enableCrc();
LoRa.onReceive(receiveCallback);
LoRa.receive();
// Flash an info pattern to indicate
// that the radio is now on
led_indicate_info(3);
}
} else {
// Flash a warning pattern to indicate
// that the radio was locked, and thus
// not started
led_indicate_warning(3);
}
} else {
// If radio is already on, we silently
// ignore the request.
}
}
void stopRadio() {
LoRa.end();
radio_online = false;
}
void update_radio_lock() {
if (lora_freq != 0 && lora_bw != 0 && lora_txp != 0xFF && lora_sf != 0) {
radio_locked = false;
} else {
radio_locked = true;
}
}
void receiveCallback(int packet_size) {
2018-06-27 11:42:48 +02:00
if (!promisc) {
// The standard operating mode allows large
// packets with a payload up to 500 bytes,
// by combining two raw LoRa packets.
// We read the 1-byte header and extract
// packet sequence number and split flags
uint8_t header = LoRa.read(); packet_size--;
uint8_t sequence = packetSequence(header);
bool ready = false;
if (isSplitPacket(header) && seq == SEQ_UNSET) {
// This is the first part of a split
// packet, so we set the seq variable
// and add the data to the buffer
2018-04-05 18:10:42 +02:00
read_len = 0;
2018-06-27 11:42:48 +02:00
seq = sequence;
last_rssi = LoRa.packetRssi();
getPacketData(packet_size);
} else if (isSplitPacket(header) && seq == sequence) {
// This is the second part of a split
// packet, so we add it to the buffer
// and set the ready flag.
last_rssi = (last_rssi+LoRa.packetRssi())/2;
getPacketData(packet_size);
2018-04-05 18:10:42 +02:00
seq = SEQ_UNSET;
2018-06-27 11:42:48 +02:00
ready = true;
} else if (isSplitPacket(header) && seq != sequence) {
// This split packet does not carry the
// same sequence id, so we must assume
// that we are seeing the first part of
// a new split packet.
read_len = 0;
seq = sequence;
last_rssi = LoRa.packetRssi();
getPacketData(packet_size);
} else if (!isSplitPacket(header)) {
// This is not a split packet, so we
// just read it and set the ready
// flag to true.
if (seq != SEQ_UNSET) {
// If we already had part of a split
// packet in the buffer, we clear it.
read_len = 0;
seq = SEQ_UNSET;
}
last_rssi = LoRa.packetRssi();
getPacketData(packet_size);
ready = true;
2018-04-05 18:10:42 +02:00
}
2018-06-27 11:42:48 +02:00
if (ready) {
// We first signal the RSSI of the
// recieved packet to the host.
Serial.write(FEND);
Serial.write(CMD_STAT_RSSI);
Serial.write((uint8_t)(last_rssi-rssi_offset));
2018-06-27 14:50:18 +02:00
Serial.write(FEND);
2018-06-27 11:42:48 +02:00
// And then write the entire packet
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
read_len = 0;
}
} else {
// In promiscuous mode, raw packets are
// output directly over to the host
read_len = 0;
2018-04-05 18:10:42 +02:00
last_rssi = LoRa.packetRssi();
getPacketData(packet_size);
// We first signal the RSSI of the
// recieved packet to the host.
Serial.write(FEND);
Serial.write(CMD_STAT_RSSI);
Serial.write((uint8_t)(last_rssi-rssi_offset));
2018-06-27 14:50:18 +02:00
Serial.write(FEND);
2018-04-05 18:10:42 +02:00
// And then write the entire packet
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
2018-06-27 11:42:48 +02:00
read_len = 0;
2018-04-05 18:10:42 +02:00
}
}
2018-06-27 10:22:44 +02:00
bool outboundReady() {
#if QUEUE_SIZE > 0
if (queue_head != queue_tail) {
return true;
} else {
return false;
}
#else
return outbound_ready;
#endif
}
bool queueFull() {
size_t new_queue_head = (queue_head+1)%QUEUE_BUF_SIZE;
if (new_queue_head == queue_tail) {
return true;
} else {
return false;
}
}
void enqueuePacket(size_t length) {
size_t new_queue_head = (queue_head+1)%QUEUE_BUF_SIZE;
if (new_queue_head != queue_tail) {
queued_lengths[queue_head] = length;
size_t insert_addr = queue_head * MTU;
for (int i = 0; i < length; i++) {
qbuf[insert_addr+i] = sbuf[i];
}
queue_head = new_queue_head;
2018-07-04 23:24:07 +02:00
if (!queueFull()) {
kiss_indicate_ready();
}
2018-06-27 10:22:44 +02:00
} else {
kiss_indicate_error(ERROR_QUEUE_FULL);
}
}
#if QUEUE_SIZE > 0
void processQueue() {
size_t fetch_address = queue_tail*MTU;
size_t fetch_length = queued_lengths[queue_tail];
for (int i = 0; i < fetch_length; i++) {
tbuf[i] = qbuf[fetch_address+i];
qbuf[fetch_address+i] = 0x00;
}
queued_lengths[queue_tail] = 0;
queue_tail = ++queue_tail%QUEUE_BUF_SIZE;
transmit(fetch_length);
if (!queueFull()) {
kiss_indicate_ready();
}
}
#endif
2018-04-05 18:10:42 +02:00
void transmit(size_t size) {
if (radio_online) {
2018-06-27 11:42:48 +02:00
if (!promisc) {
led_tx_on();
size_t written = 0;
uint8_t header = random(256) & 0xF0;
2018-04-05 18:10:42 +02:00
2018-06-27 11:42:48 +02:00
if (size > SINGLE_MTU - HEADER_L) {
header = header | FLAG_SPLIT;
}
2018-04-05 18:10:42 +02:00
2018-06-27 11:42:48 +02:00
LoRa.beginPacket();
LoRa.write(header); written++;
2018-04-05 18:10:42 +02:00
2018-06-27 11:42:48 +02:00
for (size_t i; i < size; i++) {
#if QUEUE_SIZE > 0
LoRa.write(tbuf[i]);
#else
LoRa.write(sbuf[i]);
#endif
2018-06-27 10:22:44 +02:00
2018-06-27 11:42:48 +02:00
written++;
2018-04-05 18:10:42 +02:00
2018-06-27 11:42:48 +02:00
if (written == 255) {
LoRa.endPacket();
LoRa.beginPacket();
LoRa.write(header);
written = 1;
}
2018-04-05 18:10:42 +02:00
}
2018-06-27 11:42:48 +02:00
LoRa.endPacket();
led_tx_off();
LoRa.receive();
} else {
// In promiscuous mode, we only send out
// plain raw LoRa packets with a maximum
// payload of 255 bytes
led_tx_on();
size_t written = 0;
// Cap packets at 255 bytes
if (size > SINGLE_MTU) {
size = SINGLE_MTU;
}
2018-04-26 10:34:39 +02:00
2018-06-27 11:42:48 +02:00
LoRa.beginPacket();
for (size_t i; i < size; i++) {
#if QUEUE_SIZE > 0
LoRa.write(tbuf[i]);
#else
LoRa.write(sbuf[i]);
#endif
written++;
}
LoRa.endPacket();
led_tx_off();
2018-04-26 10:34:39 +02:00
2018-06-27 11:42:48 +02:00
LoRa.receive();
}
2018-04-05 18:10:42 +02:00
} else {
kiss_indicate_error(ERROR_TXFAILED);
led_indicate_error(5);
}
2018-04-26 15:52:43 +02:00
2018-06-27 10:22:44 +02:00
#if QUEUE_SIZE == 0
if (FLOW_CONTROL_ENABLED)
kiss_indicate_ready();
#endif
2018-04-05 18:10:42 +02:00
}
void serialCallback(uint8_t sbyte) {
if (IN_FRAME && sbyte == FEND && command == CMD_DATA) {
IN_FRAME = false;
2018-06-27 10:22:44 +02:00
if (QUEUE_SIZE == 0) {
if (outbound_ready) {
kiss_indicate_error(ERROR_QUEUE_FULL);
} else {
outbound_ready = true;
}
} else {
enqueuePacket(frame_len);
}
2018-04-05 18:10:42 +02:00
} else if (sbyte == FEND) {
IN_FRAME = true;
command = CMD_UNKNOWN;
frame_len = 0;
} else if (IN_FRAME && frame_len < MTU) {
// Have a look at the command byte first
if (frame_len == 0 && command == CMD_UNKNOWN) {
command = sbyte;
} else if (command == CMD_DATA) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
sbuf[frame_len++] = sbyte;
}
} else if (command == CMD_FREQUENCY) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
cbuf[frame_len++] = sbyte;
}
if (frame_len == 4) {
uint32_t freq = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3];
if (freq == 0) {
kiss_indicate_frequency();
} else {
lora_freq = freq;
2018-06-20 17:45:22 +02:00
if (op_mode == MODE_HOST) setFrequency();
2018-04-05 18:10:42 +02:00
kiss_indicate_frequency();
}
}
} else if (command == CMD_BANDWIDTH) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
cbuf[frame_len++] = sbyte;
}
if (frame_len == 4) {
uint32_t bw = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3];
if (bw == 0) {
kiss_indicate_bandwidth();
} else {
lora_bw = bw;
2018-06-20 17:45:22 +02:00
if (op_mode == MODE_HOST) setBandwidth();
2018-04-05 18:10:42 +02:00
kiss_indicate_bandwidth();
}
}
} else if (command == CMD_TXPOWER) {
if (sbyte == 0xFF) {
kiss_indicate_txpower();
} else {
int txp = sbyte;
if (txp > 17) txp = 17;
lora_txp = txp;
2018-06-20 17:45:22 +02:00
if (op_mode == MODE_HOST) setTXPower();
2018-04-05 18:10:42 +02:00
kiss_indicate_txpower();
}
} else if (command == CMD_SF) {
if (sbyte == 0xFF) {
kiss_indicate_spreadingfactor();
} else {
int sf = sbyte;
2018-06-30 12:10:14 +02:00
if (sf < 6) sf = 6;
2018-04-05 18:10:42 +02:00
if (sf > 12) sf = 12;
lora_sf = sf;
2018-06-20 17:45:22 +02:00
if (op_mode == MODE_HOST) setSpreadingFactor();
2018-04-05 18:10:42 +02:00
kiss_indicate_spreadingfactor();
}
} else if (command == CMD_CR) {
if (sbyte == 0xFF) {
kiss_indicate_codingrate();
} else {
int cr = sbyte;
if (cr < 5) cr = 5;
if (cr > 8) cr = 8;
lora_cr = cr;
2018-06-20 17:45:22 +02:00
if (op_mode == MODE_HOST) setCodingRate();
kiss_indicate_codingrate();
}
2018-04-05 18:10:42 +02:00
} else if (command == CMD_RADIO_STATE) {
if (sbyte == 0xFF) {
kiss_indicate_radiostate();
} else if (sbyte == 0x00) {
stopRadio();
kiss_indicate_radiostate();
} else if (sbyte == 0x01) {
startRadio();
kiss_indicate_radiostate();
}
} else if (command == CMD_STAT_RX) {
kiss_indicate_stat_rx();
} else if (command == CMD_STAT_TX) {
kiss_indicate_stat_tx();
} else if (command == CMD_STAT_RSSI) {
kiss_indicate_stat_rssi();
} else if (command == CMD_RADIO_LOCK) {
update_radio_lock();
kiss_indicate_radio_lock();
} else if (command == CMD_BLINK) {
led_indicate_info(sbyte);
} else if (command == CMD_RANDOM) {
kiss_indicate_random(getRandom());
} else if (command == CMD_DETECT) {
if (sbyte == DETECT_REQ) {
kiss_indicate_detect();
}
2018-06-27 11:42:48 +02:00
} else if (command == CMD_PROMISC) {
if (sbyte == 0x01) {
promisc_enable();
} else if (sbyte == 0x00) {
promisc_disable();
}
kiss_indicate_promisc();
} else if (command == CMD_UNLOCK_ROM) {
if (sbyte == ROM_UNLOCK_BYTE) {
unlock_rom();
}
} else if (command == CMD_ROM_READ) {
kiss_dump_eeprom();
} else if (command == CMD_ROM_WRITE) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
cbuf[frame_len++] = sbyte;
}
if (frame_len == 2) {
eeprom_write(cbuf[0], cbuf[1]);
}
} else if (command == CMD_FW_VERSION) {
kiss_indicate_version();
2018-06-20 16:32:30 +02:00
} else if (command == CMD_CONF_SAVE) {
eeprom_conf_save();
} else if (command == CMD_CONF_DELETE) {
eeprom_conf_delete();
2018-04-05 18:10:42 +02:00
}
}
}
2018-04-26 15:52:43 +02:00
void updateModemStatus() {
uint8_t status = LoRa.modemStatus();
last_status_update = millis();
if (status & SIG_DETECT == 0x01) { stat_signal_detected = true; } else { stat_signal_detected = false; }
if (status & SIG_SYNCED == 0x01) { stat_signal_synced = true; } else { stat_signal_synced = false; }
if (status & RX_ONGOING == 0x01) { stat_rx_ongoing = true; } else { stat_rx_ongoing = false; }
if (stat_signal_detected || stat_signal_synced || stat_rx_ongoing) {
if (dcd_count < dcd_threshold) {
dcd_count++;
dcd = true;
} else {
dcd = true;
dcd_led = true;
}
} else {
if (dcd_count > 0) {
dcd_count--;
} else {
dcd_led = false;
}
dcd = false;
}
if (dcd_led) {
led_rx_on();
} else {
led_rx_off();
}
}
void checkModemStatus() {
if (millis()-last_status_update >= status_interval_ms) {
updateModemStatus();
}
}
void validateStatus() {
if (eeprom_lock_set()) {
if (eeprom_product_valid() && eeprom_model_valid() && eeprom_hwrev_valid()) {
if (eeprom_checksum_valid()) {
hw_ready = true;
2018-06-20 16:32:30 +02:00
if (eeprom_have_conf()) {
eeprom_conf_load();
2018-06-20 17:45:22 +02:00
op_mode = MODE_TNC;
2018-06-20 16:32:30 +02:00
startRadio();
}
}
} else {
hw_ready = false;
}
} else {
hw_ready = false;
}
}
2018-04-05 18:10:42 +02:00
void loop() {
2018-04-26 15:52:43 +02:00
if (radio_online) {
checkModemStatus();
2018-06-27 10:22:44 +02:00
if (outboundReady() && !SERIAL_READING) {
2018-04-26 15:52:43 +02:00
if (!dcd_waiting) updateModemStatus();
if (!dcd && !dcd_led) {
if (dcd_waiting) delay(lora_rx_turnaround_ms);
2018-04-26 16:47:03 +02:00
updateModemStatus();
if (!dcd) {
dcd_waiting = false;
2018-06-27 10:22:44 +02:00
#if QUEUE_SIZE > 0
processQueue();
#else
outbound_ready = false;
transmit(frame_len);
#endif
2018-04-26 16:47:03 +02:00
}
2018-04-26 15:52:43 +02:00
} else {
dcd_waiting = true;
}
}
2018-06-27 10:22:44 +02:00
2018-06-18 22:30:24 +02:00
} else {
if (hw_ready) {
led_indicate_standby();
} else {
led_indicate_not_ready();
stopRadio();
}
2018-04-26 15:52:43 +02:00
}
2018-04-05 18:10:42 +02:00
if (Serial.available()) {
2018-06-27 10:22:44 +02:00
SERIAL_READING = true;
2018-04-05 18:10:42 +02:00
char sbyte = Serial.read();
serialCallback(sbyte);
2018-06-27 10:22:44 +02:00
last_serial_read = millis();
} else {
if (SERIAL_READING && millis()-last_serial_read >= serial_read_timeout_ms) {
SERIAL_READING = false;
}
2018-04-05 18:10:42 +02:00
}
}