// Copyright (C) 2024, Mark Qvist // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see . #if BOARD_MODEL == BOARD_TBEAM || BOARD_MODEL == BOARD_TBEAM_S_V1 #include XPowersLibInterface* PMU = NULL; #ifndef PMU_WIRE_PORT #if BOARD_MODEL == BOARD_TBEAM_S_V1 #define PMU_WIRE_PORT Wire1 #else #define PMU_WIRE_PORT Wire #endif #endif #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.14 void disablePeripherals() { if (PMU) { // GNSS RTC PowerVDD PMU->enablePowerOutput(XPOWERS_VBACKUP); // LoRa VDD PMU->disablePowerOutput(XPOWERS_ALDO2); // GNSS VDD PMU->disablePowerOutput(XPOWERS_ALDO3); } } bool pmuInterrupt; void setPmuFlag() { pmuInterrupt = true; } #elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.3 #define BAT_V_CHG 4.48 #define BAT_V_FLOAT 4.33 #define BAT_SAMPLES 5 const uint8_t pin_vbat = 35; float bat_p_samples[BAT_SAMPLES]; float bat_v_samples[BAT_SAMPLES]; uint8_t bat_samples_count = 0; int bat_discharging_samples = 0; int bat_charging_samples = 0; int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; float bat_state_change_v = 0; #elif BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_OPENCOM_XL #include "nrfx_power.h" #define BAT_C_SAMPLES 7 #define BAT_D_SAMPLES 2 #define BAT_V_MIN 2.75 #define BAT_V_MAX 4.2 #define BAT_V_FLOAT 4.22 #define BAT_SAMPLES 5 #define VBAT_MV_PER_LSB (0.73242188F) // 3.0V ADC range and 12 - bit ADC resolution = 3000mV / 4096 #define VBAT_DIVIDER_COMP (1.73) // Compensation factor for the VBAT divider #define VBAT_MV_PER_LSB_FIN (VBAT_DIVIDER_COMP * VBAT_MV_PER_LSB) #define PIN_VBAT WB_A0 float bat_p_samples[BAT_SAMPLES]; float bat_v_samples[BAT_SAMPLES]; uint8_t bat_samples_count = 0; int bat_discharging_samples = 0; int bat_charging_samples = 0; int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; #elif BOARD_MODEL == BOARD_TDECK #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.3 #define BAT_V_CHG 4.48 #define BAT_V_FLOAT 4.33 #define BAT_SAMPLES 5 const uint8_t pin_vbat = 4; float bat_p_samples[BAT_SAMPLES]; float bat_v_samples[BAT_SAMPLES]; uint8_t bat_samples_count = 0; int bat_discharging_samples = 0; int bat_charging_samples = 0; int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; float bat_state_change_v = 0; #elif BOARD_MODEL == BOARD_HELTEC32_V3 #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.3 #define BAT_V_CHG 4.48 #define BAT_V_FLOAT 4.33 #define BAT_SAMPLES 7 const uint8_t pin_vbat = 1; const uint8_t pin_ctrl = 37; float bat_p_samples[BAT_SAMPLES]; float bat_v_samples[BAT_SAMPLES]; uint8_t bat_samples_count = 0; int bat_discharging_samples = 0; int bat_charging_samples = 0; int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; float bat_state_change_v = 0; >>>>>>> upstream/dev #endif uint32_t last_pmu_update = 0; uint8_t pmu_target_pps = 1; int pmu_update_interval = 1000/pmu_target_pps; uint8_t pmu_rc = 0; #define PMU_R_INTERVAL 5 void kiss_indicate_battery(); void measure_battery() { #if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_TDECK battery_installed = true; battery_indeterminate = true; #if BOARD_MODEL == BOARD_HELTEC32_V3 float battery_measurement = (float)(analogRead(pin_vbat)) * 0.0041; #else float battery_measurement = (float)(analogRead(pin_vbat)) / 4095.0*2.0*3.3*1.1; #endif bat_v_samples[bat_samples_count%BAT_SAMPLES] = battery_measurement; bat_p_samples[bat_samples_count%BAT_SAMPLES] = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; bat_samples_count++; if (!battery_ready && bat_samples_count >= BAT_SAMPLES) { battery_ready = true; } if (battery_ready) { battery_percent = 0; for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) { battery_percent += bat_p_samples[bi]; } battery_percent = battery_percent/BAT_SAMPLES; battery_voltage = 0; for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) { battery_voltage += bat_v_samples[bi]; } battery_voltage = battery_voltage/BAT_SAMPLES; if (bat_delay_v == 0) bat_delay_v = battery_voltage; if (bat_state_change_v == 0) bat_state_change_v = battery_voltage; if (battery_percent > 100.0) battery_percent = 100.0; if (battery_percent < 0.0) battery_percent = 0.0; if (bat_samples_count%BAT_SAMPLES == 0) { float bat_delay_diff = bat_state_change_v-battery_voltage; if (bat_delay_diff < 0) { bat_delay_diff *= -1; } if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) { if (bat_voltage_dropping == false) { if (bat_delay_diff > 0.008) { bat_voltage_dropping = true; bat_state_change_v = battery_voltage; // SerialBT.printf("STATE CHANGE to DISCHARGE at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); } } } else { if (bat_voltage_dropping == true) { if (bat_delay_diff > 0.01) { bat_voltage_dropping = false; bat_state_change_v = battery_voltage; // SerialBT.printf("STATE CHANGE to CHARGE at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); } } } bat_samples_count = 0; bat_delay_v = battery_voltage; } if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) { battery_state = BATTERY_STATE_DISCHARGING; } else { if (battery_percent < 100.0) { battery_state = BATTERY_STATE_CHARGING; } else { battery_state = BATTERY_STATE_CHARGED; } } // if (bt_state == BT_STATE_CONNECTED) { // SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]); // if (bat_voltage_dropping) { // SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.", battery_percent); // } else { // SerialBT.printf(" Voltage is not dropping. Percentage %.1f%%.", battery_percent); // } // if (battery_state == BATTERY_STATE_DISCHARGING) { SerialBT.printf(" Battery discharging. delay_v %.3fv", bat_delay_v); } // if (battery_state == BATTERY_STATE_CHARGING) { SerialBT.printf(" Battery charging. delay_v %.3fv", bat_delay_v); } // if (battery_state == BATTERY_STATE_CHARGED) { SerialBT.print(" Battery is charged."); } // SerialBT.print("\n"); // } } #elif BOARD_MODEL == BOARD_TBEAM || BOARD_MODEL == BOARD_TBEAM_S_V1 if (PMU) { float discharge_current = 0; float charge_current = 0; float ext_voltage = 0; float ext_current = 0; if (PMU->getChipModel() == XPOWERS_AXP192) { discharge_current = ((XPowersAXP192*)PMU)->getBattDischargeCurrent(); charge_current = ((XPowersAXP192*)PMU)->getBatteryChargeCurrent(); battery_voltage = PMU->getBattVoltage()/1000.0; // battery_percent = PMU->getBattPercentage()*1.0; battery_installed = PMU->isBatteryConnect(); external_power = PMU->isVbusIn(); ext_voltage = PMU->getVbusVoltage()/1000.0; ext_current = ((XPowersAXP192*)PMU)->getVbusCurrent(); } else if (PMU->getChipModel() == XPOWERS_AXP2101) { battery_voltage = PMU->getBattVoltage()/1000.0; // battery_percent = PMU->getBattPercentage()*1.0; battery_installed = PMU->isBatteryConnect(); external_power = PMU->isVbusIn(); ext_voltage = PMU->getVbusVoltage()/1000.0; } if (battery_installed) { if (PMU->isCharging()) { battery_state = BATTERY_STATE_CHARGING; battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; } else { if (PMU->isDischarge()) { battery_state = BATTERY_STATE_DISCHARGING; battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0; } else { battery_state = BATTERY_STATE_CHARGED; battery_percent = 100.0; } } } else { battery_state = BATTERY_STATE_UNKNOWN; battery_percent = 0.0; battery_voltage = 0.0; } if (battery_percent > 100.0) battery_percent = 100.0; if (battery_percent < 0.0) battery_percent = 0.0; float charge_watts = battery_voltage*(charge_current/1000.0); float discharge_watts = battery_voltage*(discharge_current/1000.0); float ext_watts = ext_voltage*(ext_current/1000.0); battery_ready = true; // if (bt_state == BT_STATE_CONNECTED) { // if (battery_installed) { // if (external_power) { // SerialBT.printf("External power connected, drawing %.2fw, %.1fmA at %.1fV\n", ext_watts, ext_current, ext_voltage); // } else { // SerialBT.println("Running on battery"); // } // SerialBT.printf("Battery percentage %.1f%%\n", battery_percent); // SerialBT.printf("Battery voltage %.2fv\n", battery_voltage); // // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature); // if (battery_state == BATTERY_STATE_CHARGING) { // SerialBT.printf("Charging with %.2fw, %.1fmA at %.1fV\n", charge_watts, charge_current, battery_voltage); // } else if (battery_state == BATTERY_STATE_DISCHARGING) { // SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage); // } else if (battery_state == BATTERY_STATE_CHARGED) { // SerialBT.printf("Battery charged\n"); // } // } else { // SerialBT.println("No battery installed"); // } // SerialBT.println(""); // } } else { battery_ready = false; } #elif BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_OPENCOM_XL battery_installed = true; battery_indeterminate = false; bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(PIN_VBAT)) * VBAT_MV_PER_LSB_FIN; if (bat_v_samples[bat_samples_count%BAT_SAMPLES] < 3300) { bat_p_samples[bat_samples_count%BAT_SAMPLES] = 0; } else if (bat_v_samples[bat_samples_count%BAT_SAMPLES] < 3600) { bat_v_samples[bat_samples_count%BAT_SAMPLES] -= 3300; bat_p_samples[bat_samples_count%BAT_SAMPLES] = bat_v_samples[bat_samples_count%BAT_SAMPLES] / 30; } else { bat_v_samples[bat_samples_count%BAT_SAMPLES] -= 3600; } bat_p_samples[bat_samples_count%BAT_SAMPLES] = 10 + (bat_v_samples[bat_samples_count%BAT_SAMPLES] * 0.15F); bat_samples_count++; if (!battery_ready && bat_samples_count >= BAT_SAMPLES) { battery_ready = true; } battery_percent = 0; for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) { battery_percent += bat_p_samples[bi]; } battery_percent = battery_percent/BAT_SAMPLES; battery_voltage = 0; for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) { battery_voltage += bat_v_samples[bi]; } battery_voltage = battery_voltage/BAT_SAMPLES; if (bat_delay_v == 0) bat_delay_v = battery_voltage; if (battery_percent > 100.0) battery_percent = 100.0; if (battery_percent < 0.0) battery_percent = 0.0; if (bat_samples_count%BAT_SAMPLES == 0) { if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) { bat_voltage_dropping = true; } else { bat_voltage_dropping = false; } bat_samples_count = 0; } nrfx_power_usb_state_t usbstate = nrfx_power_usbstatus_get(); if (usbstate == NRFX_POWER_USB_STATE_CONNECTED || usbstate == NRFX_POWER_USB_STATE_READY) { // charging battery_state = BATTERY_STATE_CHARGING; } else { battery_state = BATTERY_STATE_DISCHARGING; } if (battery_percent >= 98) { battery_state = BATTERY_STATE_CHARGED; } #if HAS_BLE if ((bt_state == BT_STATE_ON) || bt_state == BT_STATE_CONNECTED) { if (battery_state != BATTERY_STATE_CHARGING) { blebas.write(battery_percent); } else { blebas.write(100); } } #endif #endif if (battery_ready) { pmu_rc++; if (pmu_rc%PMU_R_INTERVAL == 0) { kiss_indicate_battery(); } } } void update_pmu() { if (millis()-last_pmu_update >= pmu_update_interval) { measure_battery(); last_pmu_update = millis(); } } bool init_pmu() { #if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 || BOARD_MODEL == BOARD_TDECK pinMode(pin_vbat, INPUT); return true; #elif BOARD_MODEL == BOARD_HELTEC32_V3 pinMode(pin_ctrl,OUTPUT); digitalWrite(pin_ctrl, LOW); return true; #elif BOARD_MODEL == BOARD_TBEAM Wire.begin(I2C_SDA, I2C_SCL); if (!PMU) { PMU = new XPowersAXP2101(PMU_WIRE_PORT); if (!PMU->init()) { delete PMU; PMU = NULL; } } if (!PMU) { PMU = new XPowersAXP192(PMU_WIRE_PORT); if (!PMU->init()) { delete PMU; PMU = NULL; } } if (!PMU) { return false; } // Configure charging indicator PMU->setChargingLedMode(XPOWERS_CHG_LED_OFF); pinMode(PMU_IRQ, INPUT_PULLUP); attachInterrupt(PMU_IRQ, setPmuFlag, FALLING); if (PMU->getChipModel() == XPOWERS_AXP192) { // Turn off unused power sources to save power PMU->disablePowerOutput(XPOWERS_DCDC1); PMU->disablePowerOutput(XPOWERS_DCDC2); PMU->disablePowerOutput(XPOWERS_LDO2); PMU->disablePowerOutput(XPOWERS_LDO3); // Set the power of LoRa and GPS module to 3.3V // LoRa PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300); // GPS PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300); // OLED PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300); // Turn on LoRa PMU->enablePowerOutput(XPOWERS_LDO2); // Turn on GPS //PMU->enablePowerOutput(XPOWERS_LDO3); // protected oled power source PMU->setProtectedChannel(XPOWERS_DCDC1); // protected esp32 power source PMU->setProtectedChannel(XPOWERS_DCDC3); // enable oled power PMU->enablePowerOutput(XPOWERS_DCDC1); PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ); PMU->enableIRQ(XPOWERS_AXP192_VBUS_REMOVE_IRQ | XPOWERS_AXP192_VBUS_INSERT_IRQ | XPOWERS_AXP192_BAT_CHG_DONE_IRQ | XPOWERS_AXP192_BAT_CHG_START_IRQ | XPOWERS_AXP192_BAT_REMOVE_IRQ | XPOWERS_AXP192_BAT_INSERT_IRQ | XPOWERS_AXP192_PKEY_SHORT_IRQ ); } else if (PMU->getChipModel() == XPOWERS_AXP2101) { // Turn off unused power sources to save power PMU->disablePowerOutput(XPOWERS_DCDC2); PMU->disablePowerOutput(XPOWERS_DCDC3); PMU->disablePowerOutput(XPOWERS_DCDC4); PMU->disablePowerOutput(XPOWERS_DCDC5); PMU->disablePowerOutput(XPOWERS_ALDO1); PMU->disablePowerOutput(XPOWERS_ALDO2); PMU->disablePowerOutput(XPOWERS_ALDO3); PMU->disablePowerOutput(XPOWERS_ALDO4); PMU->disablePowerOutput(XPOWERS_BLDO1); PMU->disablePowerOutput(XPOWERS_BLDO2); PMU->disablePowerOutput(XPOWERS_DLDO1); PMU->disablePowerOutput(XPOWERS_DLDO2); PMU->disablePowerOutput(XPOWERS_VBACKUP); // Set the power of LoRa and GPS module to 3.3V // LoRa PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300); // GPS PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300); PMU->setPowerChannelVoltage(XPOWERS_VBACKUP, 3300); // ESP32 VDD // ! No need to set, automatically open , Don't close it // PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300); // PMU->setProtectedChannel(XPOWERS_DCDC1); PMU->setProtectedChannel(XPOWERS_DCDC1); // LoRa VDD PMU->enablePowerOutput(XPOWERS_ALDO2); // GNSS VDD //PMU->enablePowerOutput(XPOWERS_ALDO3); // GNSS RTC PowerVDD //PMU->enablePowerOutput(XPOWERS_VBACKUP); } PMU->enableSystemVoltageMeasure(); PMU->enableVbusVoltageMeasure(); PMU->enableBattVoltageMeasure(); // It is necessary to disable the detection function of the TS pin on the board // without the battery temperature detection function, otherwise it will cause abnormal charging PMU->disableTSPinMeasure(); // Set the time of pressing the button to turn off PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S); return true; #elif BOARD_MODEL == BOARD_OPENCOM_XL // board doesn't have PMU but we can measure batt voltage // prep ADC for reading battery level analogReference(AR_INTERNAL_3_0); // Set the resolution to 12-bit (0..4095) analogReadResolution(12); // Let the ADC settle delay(1); // Get a single ADC sample and throw it away float raw = analogRead(PIN_VBAT); return true; #elif BOARD_MODEL == BOARD_TBEAM_S_V1 Wire1.begin(I2C_SDA, I2C_SCL); if (!PMU) { PMU = new XPowersAXP2101(PMU_WIRE_PORT); if (!PMU->init()) { delete PMU; PMU = NULL; } } if (!PMU) { return false; } /** * gnss module power channel * The default ALDO4 is off, you need to turn on the GNSS power first, otherwise it will be invalid during * initialization */ PMU->setPowerChannelVoltage(XPOWERS_ALDO4, 3300); PMU->enablePowerOutput(XPOWERS_ALDO4); // lora radio power channel PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300); PMU->enablePowerOutput(XPOWERS_ALDO3); // m.2 interface PMU->setPowerChannelVoltage(XPOWERS_DCDC3, 3300); PMU->enablePowerOutput(XPOWERS_DCDC3); /** * ALDO2 cannot be turned off. * It is a necessary condition for sensor communication. * It must be turned on to properly access the sensor and screen * It is also responsible for the power supply of PCF8563 */ PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300); PMU->enablePowerOutput(XPOWERS_ALDO2); // 6-axis , magnetometer ,bme280 , oled screen power channel PMU->setPowerChannelVoltage(XPOWERS_ALDO1, 3300); PMU->enablePowerOutput(XPOWERS_ALDO1); // sdcard power channle PMU->setPowerChannelVoltage(XPOWERS_BLDO1, 3300); PMU->enablePowerOutput(XPOWERS_BLDO1); // PMU->setPowerChannelVoltage(XPOWERS_DCDC4, 3300); // PMU->enablePowerOutput(XPOWERS_DCDC4); // not use channel PMU->disablePowerOutput(XPOWERS_DCDC2); // not elicited PMU->disablePowerOutput(XPOWERS_DCDC5); // not elicited PMU->disablePowerOutput(XPOWERS_DLDO1); // Invalid power channel, it does not exist PMU->disablePowerOutput(XPOWERS_DLDO2); // Invalid power channel, it does not exist PMU->disablePowerOutput(XPOWERS_VBACKUP); // Configure charging PMU->setChargeTargetVoltage(XPOWERS_AXP2101_CHG_VOL_4V2); PMU->setChargerConstantCurr(XPOWERS_AXP2101_CHG_CUR_500MA); // TODO: Reset PMU->setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG); // Set the time of pressing the button to turn off PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S); PMU->setPowerKeyPressOnTime(XPOWERS_POWERON_128MS); // disable all axp chip interrupt PMU->disableIRQ(XPOWERS_AXP2101_ALL_IRQ); PMU->clearIrqStatus(); // It is necessary to disable the detection function of the TS pin on the board // without the battery temperature detection function, otherwise it will cause abnormal charging PMU->disableTSPinMeasure(); PMU->enableVbusVoltageMeasure(); PMU->enableBattVoltageMeasure(); return true; #else return false; #endif }