// Copyright (c) Sandeep Mistry. All rights reserved. // Licensed under the MIT license. // Modifications and additions copyright 2024 by Mark Qvist & Jacob Eva // Obviously still under the MIT license. #ifndef RADIO_H #define RADIO_H #include #include #include "Interfaces.h" #include "Boards.h" #include "src/misc/FIFOBuffer.h" #define MAX_PKT_LENGTH 255 // TX #define PA_OUTPUT_RFO_PIN 0 #define PA_OUTPUT_PA_BOOST_PIN 1 // DCD #define STATUS_INTERVAL_MS 3 #define DCD_SAMPLES 2500 #define UTIL_UPDATE_INTERVAL_MS 1000 #define UTIL_UPDATE_INTERVAL (UTIL_UPDATE_INTERVAL_MS/STATUS_INTERVAL_MS) #define AIRTIME_LONGTERM 3600 #define AIRTIME_LONGTERM_MS (AIRTIME_LONGTERM*1000) #define AIRTIME_BINLEN_MS (STATUS_INTERVAL_MS*DCD_SAMPLES) #define AIRTIME_BINS ((AIRTIME_LONGTERM*1000)/AIRTIME_BINLEN_MS) #define current_airtime_bin(void) (millis()%AIRTIME_LONGTERM_MS)/AIRTIME_BINLEN_MS #define DCD_THRESHOLD 2 #define DCD_LED_STEP_D 3 #define LORA_PREAMBLE_SYMBOLS_HW 4 #define LORA_PREAMBLE_SYMBOLS_MIN 18 #define LORA_PREAMBLE_TARGET_MS 15 #define LORA_PREAMBLE_FAST_TARGET_MS 4 #define LORA_FAST_BITRATE_THRESHOLD 40000 #define CSMA_SLOT_MAX_MS 100 #define CSMA_SLOT_MIN_MS 24 #define RSSI_OFFSET 157 #define PHY_HEADER_LORA_SYMBOLS 8 #define _e 2.71828183 #define _S 12.5 // Status flags const uint8_t SIG_DETECT = 0x01; const uint8_t SIG_SYNCED = 0x02; const uint8_t RX_ONGOING = 0x04; // forward declare Utilities.h LED functions void led_rx_on(); void led_rx_off(); void led_indicate_airtime_lock(); #if PLATFORM == PLATFORM_ESP32 // get update_lock for ESP32 extern portMUX_TYPE update_lock; #endif class RadioInterface : public Stream { public: // todo: in the future define _spiModem and _spiSettings from here for inheritence by child classes RadioInterface(uint8_t index) : _index(index), _radio_locked(false), _radio_online(false), _st_airtime_limit(0.0), _lt_airtime_limit(0.0), _airtime_lock(false), _airtime(0.0), _longterm_airtime(0.0), _local_channel_util(0.0), _total_channel_util(0.0), _longterm_channel_util(0.0), _last_status_update(0), _stat_signal_detected(false), _stat_signal_synced(false),_stat_rx_ongoing(false), _last_dcd(0), _dcd_count(0), _dcd(false), _dcd_led(false), _dcd_waiting(false), _dcd_wait_until(0), _dcd_sample(0), _post_tx_yield_timeout(0), _csma_slot_ms(50), _csma_p(85), _csma_p_min(0.15), _csma_p_max(0.333), _csma_b_speed(0.15), _preambleLength(6), _lora_symbol_time_ms(0.0), _lora_symbol_rate(0.0), _lora_us_per_byte(0.0), _bitrate(0), _packet{0}, _onReceive(NULL), _txp(0) {}; virtual int begin() = 0; virtual void end() = 0; virtual int beginPacket(int implicitHeader = false) = 0; virtual int endPacket() = 0; virtual int packetRssi(uint8_t pkt_snr_raw = 0xFF) = 0; virtual int currentRssi() = 0; virtual uint8_t packetRssiRaw() = 0; virtual uint8_t currentRssiRaw() = 0; virtual uint8_t packetSnrRaw() = 0; virtual float packetSnr() = 0; virtual long packetFrequencyError() = 0; // from Print virtual size_t write(uint8_t byte) = 0; virtual size_t write(const uint8_t *buffer, size_t size) = 0; // from Stream virtual int available() = 0; virtual int read() = 0; virtual int peek() = 0; virtual void flush() = 0; virtual void onReceive(void(*callback)(uint8_t, int)) = 0; virtual void receive(int size = 0) = 0; virtual void standby() = 0; virtual void sleep() = 0; virtual bool preInit() = 0; virtual int8_t getTxPower() = 0; virtual void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN) = 0; virtual uint32_t getFrequency() = 0; virtual void setFrequency(uint32_t frequency) = 0; virtual void setSpreadingFactor(int sf) = 0; virtual uint8_t getSpreadingFactor() = 0; virtual uint32_t getSignalBandwidth() = 0; virtual void setSignalBandwidth(uint32_t sbw) = 0; virtual void setCodingRate4(int denominator) = 0; virtual uint8_t getCodingRate4() = 0; virtual void setPreambleLength(long length) = 0; virtual uint8_t modemStatus() = 0; virtual void enableCrc() = 0; virtual void disableCrc() = 0; virtual void enableTCXO() = 0; virtual void disableTCXO() = 0; virtual byte random() = 0; virtual void setSPIFrequency(uint32_t frequency) = 0; virtual void updateBitrate() = 0; virtual void handleDio0Rise() = 0; virtual bool getPacketValidity() = 0; uint32_t getBitrate() { return _bitrate; }; uint8_t getIndex() { return _index; }; void setRadioLock(bool lock) { _radio_locked = lock; }; bool getRadioLock() { return _radio_locked; }; void setRadioOnline(bool online) { _radio_online = online; }; bool getRadioOnline() { return _radio_online; }; void setSTALock(float at) { _st_airtime_limit = at; }; float getSTALock() { return _st_airtime_limit; }; void setLTALock(float at) { _lt_airtime_limit = at; }; float getLTALock() { return _lt_airtime_limit; }; bool calculateALock() { _airtime_lock = false; if (_st_airtime_limit != 0.0 && _airtime >= _st_airtime_limit) { _airtime_lock = true; } if (_lt_airtime_limit != 0.0 && _longterm_airtime >= _lt_airtime_limit) { _airtime_lock = true; } return _airtime_lock; }; void updateAirtime() { uint16_t cb = current_airtime_bin(); uint16_t pb = cb-1; if (cb-1 < 0) { pb = AIRTIME_BINS-1; } uint16_t nb = cb+1; if (nb == AIRTIME_BINS) { nb = 0; } _airtime_bins[nb] = 0; _airtime = (float)(_airtime_bins[cb]+_airtime_bins[pb])/(2.0*AIRTIME_BINLEN_MS); uint32_t longterm_airtime_sum = 0; for (uint16_t bin = 0; bin < AIRTIME_BINS; bin++) { longterm_airtime_sum += _airtime_bins[bin]; } _longterm_airtime = (float)longterm_airtime_sum/(float)AIRTIME_LONGTERM_MS; float longterm_channel_util_sum = 0.0; for (uint16_t bin = 0; bin < AIRTIME_BINS; bin++) { longterm_channel_util_sum += _longterm_bins[bin]; } _longterm_channel_util = (float)longterm_channel_util_sum/(float)AIRTIME_BINS; updateCSMAp(); //kiss_indicate_channel_stats(); // todo: enable me! }; void addAirtime(uint16_t written) { float packet_cost_ms = 0.0; float payload_cost_ms = ((float)written * _lora_us_per_byte)/1000.0; packet_cost_ms += payload_cost_ms; packet_cost_ms += (_preambleLength+4.25)*_lora_symbol_time_ms; packet_cost_ms += PHY_HEADER_LORA_SYMBOLS * _lora_symbol_time_ms; uint16_t cb = current_airtime_bin(); uint16_t nb = cb+1; if (nb == AIRTIME_BINS) { nb = 0; } _airtime_bins[cb] += packet_cost_ms; _airtime_bins[nb] = 0; }; void checkModemStatus() { if (millis()-_last_status_update >= STATUS_INTERVAL_MS) { updateModemStatus(); _util_samples[_dcd_sample] = _dcd; _dcd_sample = (_dcd_sample+1)%DCD_SAMPLES; if (_dcd_sample % UTIL_UPDATE_INTERVAL == 0) { int util_count = 0; for (int ui = 0; ui < DCD_SAMPLES; ui++) { if (_util_samples[ui]) util_count++; } _local_channel_util = (float)util_count / (float)DCD_SAMPLES; _total_channel_util = _local_channel_util + _airtime; if (_total_channel_util > 1.0) _total_channel_util = 1.0; int16_t cb = current_airtime_bin(); uint16_t nb = cb+1; if (nb == AIRTIME_BINS) { nb = 0; } if (_total_channel_util > _longterm_bins[cb]) _longterm_bins[cb] = _total_channel_util; _longterm_bins[nb] = 0.0; updateAirtime(); } } }; void updateModemStatus() { #if PLATFORM == PLATFORM_ESP32 portENTER_CRITICAL(&update_lock); #elif PLATFORM == PLATFORM_NRF52 portENTER_CRITICAL(); #endif uint8_t status = modemStatus(); _last_status_update = millis(); #if PLATFORM == PLATFORM_ESP32 portEXIT_CRITICAL(&update_lock); #elif PLATFORM == PLATFORM_NRF52 portEXIT_CRITICAL(); #endif if ((status & SIG_DETECT) == SIG_DETECT) { _stat_signal_detected = true; } else { _stat_signal_detected = false; } if ((status & SIG_SYNCED) == SIG_SYNCED) { _stat_signal_synced = true; } else { _stat_signal_synced = false; } if ((status & RX_ONGOING) == RX_ONGOING) { _stat_rx_ongoing = true; } else { _stat_rx_ongoing = false; } // if (stat_signal_detected || stat_signal_synced || stat_rx_ongoing) { if (_stat_signal_detected || _stat_signal_synced) { if (_stat_rx_ongoing) { if (_dcd_count < DCD_THRESHOLD) { _dcd_count++; } else { _last_dcd = _last_status_update; _dcd_led = true; _dcd = true; } } } else { if (_dcd_count == 0) { _dcd_led = false; } else if (_dcd_count > DCD_LED_STEP_D) { _dcd_count -= DCD_LED_STEP_D; } else { _dcd_count = 0; } if (_last_status_update > _last_dcd+_csma_slot_ms) { _dcd = false; _dcd_led = false; _dcd_count = 0; } } if (_dcd_led) { led_rx_on(); } else { if (_airtime_lock) { led_indicate_airtime_lock(); } else { led_rx_off(); } } }; void setPostTxYieldTimeout(uint32_t timeout) { _post_tx_yield_timeout = timeout; }; uint32_t getPostTxYieldTimeout() { return _post_tx_yield_timeout; }; void setDCD(bool dcd) { _dcd = dcd; }; bool getDCD() { return _dcd; }; void setDCDWaiting(bool dcd_waiting) { _dcd_waiting = dcd_waiting; }; bool getDCDWaiting() { return _dcd_waiting; }; void setDCDWaitUntil(uint32_t dcd_wait_until) { _dcd_wait_until = dcd_wait_until; }; bool getDCDWaitUntil() { return _dcd_wait_until; }; float getAirtime() { return _airtime; }; float getLongtermAirtime() { return _longterm_airtime; }; float getTotalChannelUtil() { return _total_channel_util; }; float getLongtermChannelUtil() { return _longterm_channel_util; }; float CSMASlope(float u) { return (pow(_e,_S*u-_S/2.0))/(pow(_e,_S*u-_S/2.0)+1.0); }; void updateCSMAp() { _csma_p = (uint8_t)((1.0-(_csma_p_min+(_csma_p_max-_csma_p_min)*CSMASlope(_airtime+_csma_b_speed)))*255.0); } uint8_t getCSMAp() { return _csma_p; }; void setCSMASlotMS(int slot_size) { _csma_slot_ms = slot_size; }; int getCSMASlotMS() { return _csma_slot_ms; }; float getSymbolTime() { return _lora_symbol_time_ms; }; float getSymbolRate() { return _lora_symbol_rate; }; long getPreambleLength() { return _preambleLength; }; protected: virtual void explicitHeaderMode() = 0; virtual void implicitHeaderMode() = 0; uint8_t _index; int8_t _txp; bool _radio_locked; bool _radio_online; float _st_airtime_limit; float _lt_airtime_limit; bool _airtime_lock; uint16_t _airtime_bins[AIRTIME_BINS] = {0}; uint16_t _longterm_bins[AIRTIME_BINS] = {0}; float _airtime; float _longterm_airtime; float _local_channel_util; float _total_channel_util; float _longterm_channel_util; uint32_t _last_status_update; bool _stat_signal_detected; bool _stat_signal_synced; bool _stat_rx_ongoing; uint32_t _last_dcd; uint16_t _dcd_count; bool _dcd; bool _dcd_led; bool _dcd_waiting; long _dcd_wait_until; bool _util_samples[DCD_SAMPLES] = {false}; int _dcd_sample; uint32_t _post_tx_yield_timeout; uint8_t _csma_p; int _csma_slot_ms; float _csma_p_min; float _csma_p_max; float _csma_b_speed; long _preambleLength; float _lora_symbol_time_ms; float _lora_symbol_rate; float _lora_us_per_byte; uint32_t _bitrate; uint8_t _packet[255]; void (*_onReceive)(uint8_t, int); }; class sx126x : public RadioInterface { public: sx126x(uint8_t index, SPIClass* spi, bool tcxo, bool dio2_as_rf_switch, int ss, int sclk, int mosi, int miso, int reset, int dio0, int busy, int rxen); int begin(); void end(); int beginPacket(int implicitHeader = false); int endPacket(); int packetRssi(uint8_t pkt_snr_raw = 0xFF); int currentRssi(); uint8_t packetRssiRaw(); uint8_t currentRssiRaw(); uint8_t packetSnrRaw(); float packetSnr(); long packetFrequencyError(); // from Print size_t write(uint8_t byte); size_t write(const uint8_t *buffer, size_t size); // from Stream int available(); int read(); int peek(); void flush(); void onReceive(void(*callback)(uint8_t, int)); void receive(int size = 0); void standby(); void sleep(); bool preInit(); int8_t getTxPower(); void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN); uint32_t getFrequency(); void setFrequency(uint32_t frequency); void setSpreadingFactor(int sf); uint8_t getSpreadingFactor(); uint32_t getSignalBandwidth(); void setSignalBandwidth(uint32_t sbw); void setCodingRate4(int denominator); uint8_t getCodingRate4(); void setPreambleLength(long length); uint8_t modemStatus(); void enableCrc(); void disableCrc(); void enableTCXO(); void disableTCXO(); byte random(); void setSPIFrequency(uint32_t frequency); void dumpRegisters(Stream& out); void updateBitrate(); void handleDio0Rise(); private: void writeBuffer(const uint8_t* buffer, size_t size); void readBuffer(uint8_t* buffer, size_t size); void loraMode(); void rxAntEnable(); void setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc); void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro); void setSyncWord(uint16_t sw); void waitOnBusy(); void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size); void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size); void explicitHeaderMode(); void implicitHeaderMode(); uint8_t readRegister(uint16_t address); void writeRegister(uint16_t address, uint8_t value); uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value); static void onDio0Rise(); void handleLowDataRate(); void optimizeModemSensitivity(); void reset(void); void calibrate(void); void calibrate_image(uint32_t frequency); bool getPacketValidity(); private: SPISettings _spiSettings; SPIClass* _spiModem; int _ss; int _sclk; int _mosi; int _miso; int _reset; int _dio0; int _rxen; int _busy; uint32_t _frequency; uint8_t _sf; uint8_t _bw; uint8_t _cr; uint8_t _ldro; int _packetIndex; int _implicitHeaderMode; int _payloadLength; int _crcMode; int _fifo_tx_addr_ptr; int _fifo_rx_addr_ptr; bool _preinit_done; bool _tcxo; bool _dio2_as_rf_switch; }; class sx127x : public RadioInterface { public: sx127x(uint8_t index, SPIClass* spi, int ss, int sclk, int mosi, int miso, int reset, int dio0, int busy); int begin(); void end(); int beginPacket(int implicitHeader = false); int endPacket(); int packetRssi(uint8_t pkt_snr_raw = 0xFF); int currentRssi(); uint8_t packetRssiRaw(); uint8_t currentRssiRaw(); uint8_t packetSnrRaw(); float packetSnr(); long packetFrequencyError(); // from Print size_t write(uint8_t byte); size_t write(const uint8_t *buffer, size_t size); // from Stream int available(); int read(); int peek(); void flush(); void onReceive(void(*callback)(uint8_t, int)); void receive(int size = 0); void standby(); void sleep(); bool preInit(); int8_t getTxPower(); void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN); uint32_t getFrequency(); void setFrequency(uint32_t frequency); void setSpreadingFactor(int sf); uint8_t getSpreadingFactor(); uint32_t getSignalBandwidth(); void setSignalBandwidth(uint32_t sbw); void setCodingRate4(int denominator); uint8_t getCodingRate4(); void setPreambleLength(long length); uint8_t modemStatus(); void enableCrc(); void disableCrc(); void enableTCXO(); void disableTCXO(); byte random(); void setSPIFrequency(uint32_t frequency); void updateBitrate(); void handleDio0Rise(); bool getPacketValidity(); private: void setSyncWord(uint8_t sw); void explicitHeaderMode(); void implicitHeaderMode(); uint8_t readRegister(uint8_t address); void writeRegister(uint8_t address, uint8_t value); uint8_t singleTransfer(uint8_t address, uint8_t value); static void onDio0Rise(); void handleLowDataRate(); void optimizeModemSensitivity(); private: SPISettings _spiSettings; SPIClass* _spiModem; int _ss; int _sclk; int _mosi; int _miso; int _reset; int _dio0; int _busy; uint32_t _frequency; int _packetIndex; int _implicitHeaderMode; bool _preinit_done; uint8_t _sf; uint8_t _cr; }; class sx128x : public RadioInterface { public: sx128x(uint8_t index, SPIClass* spi, bool tcxo, int ss, int sclk, int mosi, int miso, int reset, int dio0, int busy, int rxen, int txen); int begin(); void end(); int beginPacket(int implicitHeader = false); int endPacket(); int packetRssi(uint8_t pkt_snr_raw = 0xFF); int currentRssi(); uint8_t packetRssiRaw(); uint8_t currentRssiRaw(); uint8_t packetSnrRaw(); float packetSnr(); long packetFrequencyError(); // from Print size_t write(uint8_t byte); size_t write(const uint8_t *buffer, size_t size); // from Stream int available(); int read(); int peek(); void flush(); void onReceive(void(*callback)(uint8_t, int)); void receive(int size = 0); void standby(); void sleep(); bool preInit(); int8_t getTxPower(); void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN); uint32_t getFrequency(); void setFrequency(uint32_t frequency); void setSpreadingFactor(int sf); uint8_t getSpreadingFactor(); uint32_t getSignalBandwidth(); void setSignalBandwidth(uint32_t sbw); void setCodingRate4(int denominator); uint8_t getCodingRate4(); void setPreambleLength(long length); uint8_t modemStatus(); void enableCrc(); void disableCrc(); void enableTCXO(); void disableTCXO(); byte random(); void setSPIFrequency(uint32_t frequency); void dumpRegisters(Stream& out); void updateBitrate(); void handleDio0Rise(); bool getPacketValidity(); private: void writeBuffer(const uint8_t* buffer, size_t size); void readBuffer(uint8_t* buffer, size_t size); void txAntEnable(); void rxAntEnable(); void loraMode(); void waitOnBusy(); void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size); void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size); void setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc); void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr); void setSyncWord(int sw); void explicitHeaderMode(); void implicitHeaderMode(); uint8_t readRegister(uint16_t address); void writeRegister(uint16_t address, uint8_t value); uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value); static void onDio0Rise(); void handleLowDataRate(); void optimizeModemSensitivity(); private: SPISettings _spiSettings; SPIClass* _spiModem; int _ss; int _sclk; int _mosi; int _miso; int _reset; int _dio0; int _rxen; int _txen; int _busy; int _modem; uint32_t _frequency; uint8_t _sf; uint8_t _bw; uint8_t _cr; int _packetIndex; int _implicitHeaderMode; int _payloadLength; int _crcMode; int _fifo_tx_addr_ptr; int _fifo_rx_addr_ptr; bool _preinit_done; int _rxPacketLength; bool _tcxo; }; #endif