// Copyright (C) 2023, Mark Qvist // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include "Radio.h" #include "Config.h" // Included for sorting #include #include #if HAS_EEPROM #include #elif PLATFORM == PLATFORM_NRF52 #include #include using namespace Adafruit_LittleFS_Namespace; #define EEPROM_FILE "eeprom" bool file_exists = false; int written_bytes = 4; File file(InternalFS); #endif #include #include "ROM.h" #include "Framing.h" #include "MD5.h" #if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52 uint8_t eeprom_read(uint32_t mapped_addr); #endif #if HAS_DISPLAY == true #include "Display.h" #endif #if HAS_BLUETOOTH == true || HAS_BLE == true void kiss_indicate_btpin(); #include "Bluetooth.h" #endif #if HAS_PMU == true #include "Power.h" #endif #if HAS_INPUT == true #include "Input.h" #endif #if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52 #include "Device.h" #endif #if MCU_VARIANT == MCU_ESP32 #if BOARD_MODEL == BOARD_HELTEC32_V3 //https://github.com/espressif/esp-idf/issues/8855 #include "hal/wdt_hal.h" #elif BOARD_MODEL == BOARD_RNODE_NG_22 #include "hal/wdt_hal.h" #else BOARD_MODEL != BOARD_RNODE_NG_22 #include "soc/rtc_wdt.h" #endif #define ISR_VECT IRAM_ATTR #else #define ISR_VECT #endif uint8_t boot_vector = 0x00; #if MCU_VARIANT == MCU_ESP32 // TODO: Get ESP32 boot flags #elif MCU_VARIANT == MCU_NRF52 // TODO: Get NRF52 boot flags #endif #if HAS_NP == true #include #define NUMPIXELS 1 #define NP_M 0.15 Adafruit_NeoPixel pixels(NUMPIXELS, pin_np, NEO_GRB + NEO_KHZ800); uint8_t npr = 0; uint8_t npg = 0; uint8_t npb = 0; bool pixels_started = false; void npset(uint8_t r, uint8_t g, uint8_t b) { if (pixels_started != true) { pixels.begin(); pixels_started = true; } if (r != npr || g != npg || b != npb) { npr = r; npg = g; npb = b; pixels.setPixelColor(0, pixels.Color(npr*NP_M, npg*NP_M, npb*NP_M)); pixels.show(); } } void boot_seq() { uint8_t rs[] = { 0x00, 0x00, 0x00 }; uint8_t gs[] = { 0x10, 0x08, 0x00 }; uint8_t bs[] = { 0x00, 0x08, 0x10 }; for (int i = 0; i < 1*sizeof(rs); i++) { npset(rs[i%sizeof(rs)], gs[i%sizeof(gs)], bs[i%sizeof(bs)]); delay(33); npset(0x00, 0x00, 0x00); delay(66); } } #else void boot_seq() { } #endif #if MCU_VARIANT == MCU_ESP32 #if HAS_NP == true void led_rx_on() { npset(0, 0, 0xFF); } void led_rx_off() { npset(0, 0, 0); } void led_tx_on() { npset(0xFF, 0x50, 0x00); } void led_tx_off() { npset(0, 0, 0); } #elif BOARD_MODEL == BOARD_RNODE_NG_20 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_RNODE_NG_21 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_RNODE_NG_22 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_TBEAM void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, LOW); } void led_tx_off() { digitalWrite(pin_led_tx, HIGH); } #elif BOARD_MODEL == BOARD_LORA32_V1_0 #if defined(EXTERNAL_LEDS) void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #else void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #endif #elif BOARD_MODEL == BOARD_LORA32_V2_0 #if defined(EXTERNAL_LEDS) void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #else void led_rx_on() { digitalWrite(pin_led_rx, LOW); } void led_rx_off() { digitalWrite(pin_led_rx, HIGH); } void led_tx_on() { digitalWrite(pin_led_tx, LOW); } void led_tx_off() { digitalWrite(pin_led_tx, HIGH); } #endif #elif BOARD_MODEL == BOARD_HELTEC32_V2 #if defined(EXTERNAL_LEDS) void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #else void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #endif #elif BOARD_MODEL == BOARD_HELTEC32_V3 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_LORA32_V2_1 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_HUZZAH32 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #elif BOARD_MODEL == BOARD_GENERIC_ESP32 void led_rx_on() { digitalWrite(pin_led_rx, HIGH); } void led_rx_off() { digitalWrite(pin_led_rx, LOW); } void led_tx_on() { digitalWrite(pin_led_tx, HIGH); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); } #endif #elif MCU_VARIANT == MCU_NRF52 #if BOARD_MODEL == BOARD_RAK4631 void led_rx_on() { analogWrite(pin_led_rx, 1); } void led_rx_off() { analogWrite(pin_led_rx, 0); } void led_tx_on() { analogWrite(pin_led_tx, 1); } void led_tx_off() { analogWrite(pin_led_tx, 0); } #endif #endif void hard_reset(void) { #if MCU_VARIANT == MCU_ESP32 ESP.restart(); #elif MCU_VARIANT == MCU_NRF52 NVIC_SystemReset(); #endif } // LED Indication: Error void led_indicate_error(int cycles) { #if HAS_NP == true bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { npset(0xFF, 0x00, 0x00); delay(100); npset(0xFF, 0x50, 0x00); delay(100); if (!forever) cycles--; } npset(0,0,0); #else bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { digitalWrite(pin_led_rx, HIGH); digitalWrite(pin_led_tx, LOW); delay(100); digitalWrite(pin_led_rx, LOW); digitalWrite(pin_led_tx, HIGH); delay(100); if (!forever) cycles--; } led_rx_off(); led_tx_off(); #endif } // LED Indication: Airtime Lock void led_indicate_airtime_lock() { #if HAS_NP == true npset(32,0,2); #endif } // LED Indication: Boot Error void led_indicate_boot_error() { #if HAS_NP == true while(true) { npset(0xFF, 0xFF, 0xFF); } #else while (true) { led_tx_on(); led_rx_off(); delay(10); led_rx_on(); led_tx_off(); delay(5); } #endif } // LED Indication: Warning void led_indicate_warning(int cycles) { #if HAS_NP == true bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { npset(0xFF, 0x50, 0x00); delay(100); npset(0x00, 0x00, 0x00); delay(100); if (!forever) cycles--; } npset(0,0,0); #else bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; digitalWrite(pin_led_tx, HIGH); while(cycles > 0) { led_tx_off(); delay(100); led_tx_on(); delay(100); if (!forever) cycles--; } led_tx_off(); #endif } // LED Indication: Info #if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52 #if HAS_NP == true void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { npset(0x00, 0x00, 0xFF); delay(100); npset(0x00, 0x00, 0x00); delay(100); if (!forever) cycles--; } npset(0,0,0); } #elif BOARD_MODEL == BOARD_LORA32_V2_1 void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_rx_off(); delay(100); led_rx_on(); delay(100); if (!forever) cycles--; } led_rx_off(); } #elif BOARD_MODEL == BOARD_LORA32_V2_0 void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_rx_off(); delay(100); led_rx_on(); delay(100); if (!forever) cycles--; } led_rx_off(); } #else void led_indicate_info(int cycles) { bool forever = (cycles == 0) ? true : false; cycles = forever ? 1 : cycles; while(cycles > 0) { led_tx_off(); delay(100); led_tx_on(); delay(100); if (!forever) cycles--; } led_tx_off(); } #endif #endif unsigned long led_standby_ticks = 0; #if MCU_VARIANT == MCU_ESP32 #if HAS_NP == true int led_standby_lng = 100; int led_standby_cut = 200; int led_standby_min = 0; int led_standby_max = 375+led_standby_lng; int led_notready_min = 0; int led_notready_max = led_standby_max; int led_notready_value = led_notready_min; int8_t led_notready_direction = 0; unsigned long led_notready_ticks = 0; unsigned long led_standby_wait = 350; unsigned long led_console_wait = 1; unsigned long led_notready_wait = 200; #else uint8_t led_standby_min = 200; uint8_t led_standby_max = 255; uint8_t led_notready_min = 0; uint8_t led_notready_max = 255; uint8_t led_notready_value = led_notready_min; int8_t led_notready_direction = 0; unsigned long led_notready_ticks = 0; unsigned long led_standby_wait = 1768; unsigned long led_notready_wait = 150; #endif #elif MCU_VARIANT == MCU_NRF52 uint8_t led_standby_min = 200; uint8_t led_standby_max = 255; uint8_t led_notready_min = 0; uint8_t led_notready_max = 255; uint8_t led_notready_value = led_notready_min; int8_t led_notready_direction = 0; unsigned long led_notready_ticks = 0; unsigned long led_standby_wait = 1768; unsigned long led_notready_wait = 150; #endif unsigned long led_standby_value = led_standby_min; int8_t led_standby_direction = 0; #if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52 #if HAS_NP == true void led_indicate_standby() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } uint8_t led_standby_intensity; led_standby_value += led_standby_direction; int led_standby_ti = led_standby_value - led_standby_lng; if (led_standby_ti < 0) { led_standby_intensity = 0; } else if (led_standby_ti > led_standby_cut) { led_standby_intensity = led_standby_cut; } else { led_standby_intensity = led_standby_ti; } npset(0x00, 0x00, led_standby_intensity); } } void led_indicate_console() { npset(0x60, 0x00, 0x60); // led_standby_ticks++; // if (led_standby_ticks > led_console_wait) { // led_standby_ticks = 0; // if (led_standby_value <= led_standby_min) { // led_standby_direction = 1; // } else if (led_standby_value >= led_standby_max) { // led_standby_direction = -1; // } // uint8_t led_standby_intensity; // led_standby_value += led_standby_direction; // int led_standby_ti = led_standby_value - led_standby_lng; // if (led_standby_ti < 0) { // led_standby_intensity = 0; // } else if (led_standby_ti > led_standby_cut) { // led_standby_intensity = led_standby_cut; // } else { // led_standby_intensity = led_standby_ti; // } // npset(led_standby_intensity, 0x00, led_standby_intensity); // } } #else void led_indicate_standby() { led_standby_ticks++; if (led_standby_ticks > led_standby_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } led_standby_value += led_standby_direction; if (led_standby_value > 253) { led_tx_on(); } else { led_tx_off(); } #if BOARD_MODEL == BOARD_LORA32_V2_1 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #elif BOARD_MODEL == BOARD_LORA32_V2_0 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #else led_rx_off(); #endif } } void led_indicate_console() { led_indicate_standby(); } #endif #endif #if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52 #if HAS_NP == true void led_indicate_not_ready() { led_standby_ticks++; if (led_standby_ticks > led_notready_wait) { led_standby_ticks = 0; if (led_standby_value <= led_standby_min) { led_standby_direction = 1; } else if (led_standby_value >= led_standby_max) { led_standby_direction = -1; } uint8_t led_standby_intensity; led_standby_value += led_standby_direction; int led_standby_ti = led_standby_value - led_standby_lng; if (led_standby_ti < 0) { led_standby_intensity = 0; } else if (led_standby_ti > led_standby_cut) { led_standby_intensity = led_standby_cut; } else { led_standby_intensity = led_standby_ti; } npset(led_standby_intensity, 0x00, 0x00); } } #else void led_indicate_not_ready() { led_notready_ticks++; if (led_notready_ticks > led_notready_wait) { led_notready_ticks = 0; if (led_notready_value <= led_notready_min) { led_notready_direction = 1; } else if (led_notready_value >= led_notready_max) { led_notready_direction = -1; } led_notready_value += led_notready_direction; if (led_notready_value > 128) { led_tx_on(); } else { led_tx_off(); } #if BOARD_MODEL == BOARD_LORA32_V2_1 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #elif BOARD_MODEL == BOARD_LORA32_V2_0 #if defined(EXTERNAL_LEDS) led_rx_off(); #endif #else led_rx_off(); #endif } } #endif #endif bool interface_bitrate_cmp(RadioInterface* p, RadioInterface* q) { long p_bitrate = p->getBitrate(); long q_bitrate = q->getBitrate(); return p_bitrate > q_bitrate; } // Sort interfaces in descending order according to bitrate. void sort_interfaces() { std::sort(std::begin(interface_obj_sorted), std::end(interface_obj_sorted), interface_bitrate_cmp); } void serial_write(uint8_t byte) { #if HAS_BLUETOOTH || HAS_BLE == true if (bt_state != BT_STATE_CONNECTED) { Serial.write(byte); } else { SerialBT.write(byte); } #else Serial.write(byte); #endif } void escaped_serial_write(uint8_t byte) { if (byte == FEND) { serial_write(FESC); byte = TFEND; } if (byte == FESC) { serial_write(FESC); byte = TFESC; } serial_write(byte); } void kiss_indicate_reset() { serial_write(FEND); serial_write(CMD_RESET); serial_write(CMD_RESET_BYTE); serial_write(FEND); } void kiss_indicate_error(uint8_t error_code) { serial_write(FEND); serial_write(CMD_ERROR); serial_write(error_code); serial_write(FEND); } void kiss_indicate_radiostate(RadioInterface* radio) { serial_write(FEND); serial_write(CMD_RADIO_STATE); serial_write(radio->getRadioOnline()); serial_write(FEND); } void kiss_indicate_stat_rx() { // todo, implement //serial_write(FEND); //serial_write(CMD_STAT_RX); //escaped_serial_write(stat_rx>>24); //escaped_serial_write(stat_rx>>16); //escaped_serial_write(stat_rx>>8); //escaped_serial_write(stat_rx); //serial_write(FEND); } void kiss_indicate_stat_tx() { // todo, implement //serial_write(FEND); //serial_write(CMD_STAT_TX); //escaped_serial_write(stat_tx>>24); //escaped_serial_write(stat_tx>>16); //escaped_serial_write(stat_tx>>8); //escaped_serial_write(stat_tx); //serial_write(FEND); } void kiss_indicate_stat_rssi() { uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset); serial_write(FEND); serial_write(CMD_STAT_RSSI); escaped_serial_write(packet_rssi_val); serial_write(FEND); } void kiss_indicate_stat_snr() { serial_write(FEND); serial_write(CMD_STAT_SNR); escaped_serial_write(last_snr_raw); serial_write(FEND); } void kiss_indicate_radio_lock(RadioInterface* radio) { serial_write(FEND); serial_write(CMD_RADIO_LOCK); serial_write(radio->getRadioLock()); serial_write(FEND); } void kiss_indicate_spreadingfactor(RadioInterface* radio) { serial_write(FEND); serial_write(CMD_SF); serial_write(radio->getSpreadingFactor()); serial_write(FEND); } void kiss_indicate_codingrate(RadioInterface* radio) { serial_write(FEND); serial_write(CMD_CR); serial_write(radio->getCodingRate4()); serial_write(FEND); } void kiss_indicate_implicit_length() { serial_write(FEND); serial_write(CMD_IMPLICIT); serial_write(implicit_l); serial_write(FEND); } void kiss_indicate_txpower(RadioInterface* radio) { uint8_t txp = radio->getTxPower(); serial_write(FEND); serial_write(CMD_TXPOWER); serial_write(txp); serial_write(FEND); } void kiss_indicate_bandwidth(RadioInterface* radio) { uint32_t bw = radio->getSignalBandwidth(); serial_write(FEND); serial_write(CMD_BANDWIDTH); escaped_serial_write(bw>>24); escaped_serial_write(bw>>16); escaped_serial_write(bw>>8); escaped_serial_write(bw); serial_write(FEND); } void kiss_indicate_frequency(RadioInterface* radio) { uint32_t freq = radio->getFrequency(); serial_write(FEND); serial_write(CMD_FREQUENCY); escaped_serial_write(freq>>24); escaped_serial_write(freq>>16); escaped_serial_write(freq>>8); escaped_serial_write(freq); serial_write(FEND); } void kiss_indicate_interface(int index) { serial_write(FEND); serial_write(CMD_INTERFACES); // print the index to the interface and the interface type serial_write(index); serial_write(interfaces[index]); serial_write(FEND); } void kiss_indicate_st_alock(RadioInterface* radio) { uint16_t at = (uint16_t)(radio->getSTALock()*100*100); serial_write(FEND); serial_write(CMD_ST_ALOCK); escaped_serial_write(at>>8); escaped_serial_write(at); serial_write(FEND); } void kiss_indicate_lt_alock(RadioInterface* radio) { uint16_t at = (uint16_t)(radio->getLTALock()*100*100); serial_write(FEND); serial_write(CMD_LT_ALOCK); escaped_serial_write(at>>8); escaped_serial_write(at); serial_write(FEND); } void kiss_indicate_channel_stats(RadioInterface* radio) { uint16_t ats = (uint16_t)(radio->getAirtime()*100*100); uint16_t atl = (uint16_t)(radio->getLongtermAirtime()*100*100); uint16_t cls = (uint16_t)(radio->getTotalChannelUtil()*100*100); uint16_t cll = (uint16_t)(radio->getLongtermChannelUtil()*100*100); serial_write(FEND); serial_write(CMD_STAT_CHTM); escaped_serial_write(ats>>8); escaped_serial_write(ats); escaped_serial_write(atl>>8); escaped_serial_write(atl); escaped_serial_write(cls>>8); escaped_serial_write(cls); escaped_serial_write(cll>>8); escaped_serial_write(cll); serial_write(FEND); } void kiss_indicate_phy_stats(RadioInterface* radio) { uint16_t lst = (uint16_t)(radio->getSymbolTime()*1000); uint16_t lsr = (uint16_t)(radio->getSymbolRate()); uint16_t prs = (uint16_t)(radio->getPreambleLength()+4); uint16_t prt = (uint16_t)((radio->getPreambleLength()+4)*radio->getSymbolTime()); uint16_t cst = (uint16_t)(radio->getCSMASlotMS()); serial_write(FEND); serial_write(CMD_STAT_PHYPRM); escaped_serial_write(lst>>8); escaped_serial_write(lst); escaped_serial_write(lsr>>8); escaped_serial_write(lsr); escaped_serial_write(prs>>8); escaped_serial_write(prs); escaped_serial_write(prt>>8); escaped_serial_write(prt); escaped_serial_write(cst>>8); escaped_serial_write(cst); serial_write(FEND); } void kiss_indicate_battery() { #if MCU_VARIANT == MCU_ESP32 serial_write(FEND); serial_write(CMD_STAT_BAT); escaped_serial_write(battery_state); escaped_serial_write((uint8_t)int(battery_percent)); serial_write(FEND); #endif } void kiss_indicate_btpin() { #if HAS_BLUETOOTH || HAS_BLE == true serial_write(FEND); serial_write(CMD_BT_PIN); escaped_serial_write(bt_ssp_pin>>24); escaped_serial_write(bt_ssp_pin>>16); escaped_serial_write(bt_ssp_pin>>8); escaped_serial_write(bt_ssp_pin); serial_write(FEND); #endif } void kiss_indicate_random(uint8_t byte) { serial_write(FEND); serial_write(CMD_RANDOM); serial_write(byte); serial_write(FEND); } void kiss_indicate_fbstate() { serial_write(FEND); serial_write(CMD_FB_EXT); #if HAS_DISPLAY if (disp_ext_fb) { serial_write(0x01); } else { serial_write(0x00); } #else serial_write(0xFF); #endif serial_write(FEND); } #if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52 void kiss_indicate_device_hash() { serial_write(FEND); serial_write(CMD_DEV_HASH); for (int i = 0; i < DEV_HASH_LEN; i++) { uint8_t byte = dev_hash[i]; escaped_serial_write(byte); } serial_write(FEND); } void kiss_indicate_target_fw_hash() { serial_write(FEND); serial_write(CMD_HASHES); serial_write(0x01); for (int i = 0; i < DEV_HASH_LEN; i++) { uint8_t byte = dev_firmware_hash_target[i]; escaped_serial_write(byte); } serial_write(FEND); } void kiss_indicate_fw_hash() { serial_write(FEND); serial_write(CMD_HASHES); serial_write(0x02); for (int i = 0; i < DEV_HASH_LEN; i++) { uint8_t byte = dev_firmware_hash[i]; escaped_serial_write(byte); } serial_write(FEND); } void kiss_indicate_bootloader_hash() { serial_write(FEND); serial_write(CMD_HASHES); serial_write(0x03); for (int i = 0; i < DEV_HASH_LEN; i++) { uint8_t byte = dev_bootloader_hash[i]; escaped_serial_write(byte); } serial_write(FEND); } void kiss_indicate_partition_table_hash() { serial_write(FEND); serial_write(CMD_HASHES); serial_write(0x04); for (int i = 0; i < DEV_HASH_LEN; i++) { uint8_t byte = dev_partition_table_hash[i]; escaped_serial_write(byte); } serial_write(FEND); } #endif void kiss_indicate_fb() { serial_write(FEND); serial_write(CMD_FB_READ); #if HAS_DISPLAY for (int i = 0; i < 512; i++) { uint8_t byte = fb[i]; escaped_serial_write(byte); } #else serial_write(0xFF); #endif serial_write(FEND); } void kiss_indicate_ready() { serial_write(FEND); serial_write(CMD_READY); serial_write(0x01); serial_write(FEND); } void kiss_indicate_not_ready() { serial_write(FEND); serial_write(CMD_READY); serial_write(0x00); serial_write(FEND); } void kiss_indicate_promisc() { serial_write(FEND); serial_write(CMD_PROMISC); if (promisc) { serial_write(0x01); } else { serial_write(0x00); } serial_write(FEND); } void kiss_indicate_detect() { serial_write(FEND); serial_write(CMD_DETECT); serial_write(DETECT_RESP); serial_write(FEND); } void kiss_indicate_version() { serial_write(FEND); serial_write(CMD_FW_VERSION); serial_write(MAJ_VERS); serial_write(MIN_VERS); serial_write(FEND); } void kiss_indicate_platform() { serial_write(FEND); serial_write(CMD_PLATFORM); serial_write(PLATFORM); serial_write(FEND); } void kiss_indicate_board() { serial_write(FEND); serial_write(CMD_BOARD); serial_write(BOARD_MODEL); serial_write(FEND); } void kiss_indicate_mcu() { serial_write(FEND); serial_write(CMD_MCU); serial_write(MCU_VARIANT); serial_write(FEND); } inline bool isSplitPacket(uint8_t header) { return (header & FLAG_SPLIT); } inline uint8_t packetSequence(uint8_t header) { return header >> 4; } void set_implicit_length(uint8_t len) { implicit_l = len; if (implicit_l != 0) { implicit = true; } else { implicit = false; } } void setTXPower(RadioInterface* radio, int txp) { if (model == MODEL_11) { if (interfaces[radio->getIndex()] == SX128X) { radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); } else { radio->setTxPower(txp, PA_OUTPUT_RFO_PIN); } } if (model == MODEL_12) { if (interfaces[radio->getIndex()] == SX128X) { radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); } else { radio->setTxPower(txp, PA_OUTPUT_RFO_PIN); } } if (model == MODEL_A1) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A2) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A3) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_A4) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN); if (model == MODEL_A6) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A7) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A8) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_A9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B3) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B4) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B8) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_B9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_C4) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_C9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_E4) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_E9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_E3) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_E8) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_FE) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN); if (model == MODEL_FF) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN); } uint8_t getRandom(RadioInterface* radio) { if (radio->getRadioOnline()) { return radio->random(); } else { return 0x00; } } uint8_t getInterfaceIndex(uint8_t byte) { switch (byte) { case CMD_INT0_DATA: case CMD_SEL_INT0: return 0; case CMD_INT1_DATA: case CMD_SEL_INT1: return 1; case CMD_INT2_DATA: case CMD_SEL_INT2: return 2; case CMD_INT3_DATA: case CMD_SEL_INT3: return 3; case CMD_INT4_DATA: case CMD_SEL_INT4: return 4; case CMD_INT5_DATA: case CMD_SEL_INT5: return 5; case CMD_INT6_DATA: case CMD_SEL_INT6: return 6; case CMD_INT7_DATA: case CMD_SEL_INT7: return 7; case CMD_INT8_DATA: case CMD_SEL_INT8: return 8; case CMD_INT9_DATA: case CMD_SEL_INT9: return 9; case CMD_INT10_DATA: case CMD_SEL_INT10: return 10; case CMD_INT11_DATA: case CMD_SEL_INT11: return 11; default: return 0; } } uint8_t getInterfaceCommandByte(uint8_t index) { switch (index) { case 0: return CMD_INT0_DATA; case 1: return CMD_INT1_DATA; case 2: return CMD_INT2_DATA; case 3: return CMD_INT3_DATA; case 4: return CMD_INT4_DATA; case 5: return CMD_INT5_DATA; case 6: return CMD_INT6_DATA; case 7: return CMD_INT7_DATA; case 8: return CMD_INT8_DATA; case 9: return CMD_INT9_DATA; case 10: return CMD_INT10_DATA; case 11: return CMD_INT11_DATA; default: return 0; } } uint32_t getQueueSize(uint8_t index) { switch (index) { case 0: return CONFIG_QUEUE_0_SIZE; #if INTERFACE_COUNT > 1 case 1: return CONFIG_QUEUE_1_SIZE; #endif #if INTERFACE_COUNT > 2 case 2: return CONFIG_QUEUE_2_SIZE; #endif #if INTERFACE_COUNT > 3 case 3: return CONFIG_QUEUE_3_SIZE; #endif #if INTERFACE_COUNT > 4 case 4: return CONFIG_QUEUE_4_SIZE; #endif #if INTERFACE_COUNT > 5 case 5: return CONFIG_QUEUE_5_SIZE; #endif #if INTERFACE_COUNT > 6 case 6: return CONFIG_QUEUE_6_SIZE; #endif #if INTERFACE_COUNT > 7 case 7: return CONFIG_QUEUE_7_SIZE; #endif #if INTERFACE_COUNT > 8 case 8: return CONFIG_QUEUE_8_SIZE; #endif #if INTERFACE_COUNT > 9 case 9: return CONFIG_QUEUE_9_SIZE; #endif #if INTERFACE_COUNT > 10 case 10: return CONFIG_QUEUE_10_SIZE; #endif #if INTERFACE_COUNT > 11 case 11: return CONFIG_QUEUE_11_SIZE; #endif } } void promisc_enable() { promisc = true; } void promisc_disable() { promisc = false; } #if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52 bool eeprom_begin() { InternalFS.begin(); file.open(EEPROM_FILE, FILE_O_READ); // if file doesn't exist if (!file) { if (file.open(EEPROM_FILE, FILE_O_WRITE)) { // initialise the file with empty content uint8_t empty_content[EEPROM_SIZE] = {0}; file.write(empty_content, EEPROM_SIZE); return true; } else { return false; } } else { file.close(); file.open(EEPROM_FILE, FILE_O_WRITE); return true; } } uint8_t eeprom_read(uint32_t mapped_addr) { uint8_t byte; void* byte_ptr = &byte; file.seek(mapped_addr); file.read(byte_ptr, 1); return byte; } #endif bool eeprom_info_locked() { #if HAS_EEPROM uint8_t lock_byte = EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)); #elif MCU_VARIANT == MCU_NRF52 uint8_t lock_byte = eeprom_read(eeprom_addr(ADDR_INFO_LOCK)); #endif if (lock_byte == INFO_LOCK_BYTE) { return true; } else { return false; } } void eeprom_dump_info() { for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) { #if HAS_EEPROM uint8_t byte = EEPROM.read(eeprom_addr(addr)); #elif MCU_VARIANT == MCU_NRF52 uint8_t byte = eeprom_read(eeprom_addr(addr)); #endif escaped_serial_write(byte); } } void eeprom_dump_config() { for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) { #if HAS_EEPROM uint8_t byte = EEPROM.read(eeprom_addr(addr)); #elif MCU_VARIANT == MCU_NRF52 uint8_t byte = eeprom_read(eeprom_addr(addr)); #endif escaped_serial_write(byte); } } void eeprom_dump_all() { for (int addr = 0; addr < EEPROM_RESERVED; addr++) { #if HAS_EEPROM uint8_t byte = EEPROM.read(eeprom_addr(addr)); #elif MCU_VARIANT == MCU_NRF52 uint8_t byte = eeprom_read(eeprom_addr(addr)); #endif escaped_serial_write(byte); } } void kiss_dump_eeprom() { serial_write(FEND); serial_write(CMD_ROM_READ); eeprom_dump_all(); serial_write(FEND); } #if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52 void eeprom_flush() { // sync file contents to flash file.close(); file.open(EEPROM_FILE, FILE_O_WRITE); written_bytes = 0; } #endif void eeprom_update(int mapped_addr, uint8_t byte) { #if MCU_VARIANT == MCU_ESP32 if (EEPROM.read(mapped_addr) != byte) { EEPROM.write(mapped_addr, byte); EEPROM.commit(); } #elif !HAS_EEPROM && MCU_VARIANT == MCU_NRF52 // todo: clean up this implementation, writing one byte and syncing // each time is really slow, but this is also suboptimal uint8_t read_byte; void* read_byte_ptr = &read_byte; file.seek(mapped_addr); file.read(read_byte_ptr, 1); file.seek(mapped_addr); if (read_byte != byte) { file.write(byte); } written_bytes++; if (((mapped_addr - eeprom_addr(0)) == ADDR_INFO_LOCK) || (mapped_addr - eeprom_addr(0)) == ADDR_CONF_OK) { // have to do a flush because we're only writing 1 byte and it syncs after 4 eeprom_flush(); } if (written_bytes >= 4) { file.close(); file.open(EEPROM_FILE, FILE_O_WRITE); written_bytes = 0; } #endif } void eeprom_write(uint8_t addr, uint8_t byte) { if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) { eeprom_update(eeprom_addr(addr), byte); } else { kiss_indicate_error(ERROR_EEPROM_LOCKED); } } void eeprom_erase() { for (int addr = 0; addr < EEPROM_RESERVED; addr++) { eeprom_update(eeprom_addr(addr), 0xFF); } hard_reset(); } bool eeprom_lock_set() { #if HAS_EEPROM if (EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) { #elif MCU_VARIANT == MCU_NRF52 if (eeprom_read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) { #endif return true; } else { return false; } } bool eeprom_product_valid() { #if HAS_EEPROM uint8_t rval = EEPROM.read(eeprom_addr(ADDR_PRODUCT)); #elif MCU_VARIANT == MCU_NRF52 uint8_t rval = eeprom_read(eeprom_addr(ADDR_PRODUCT)); #endif #if PLATFORM == PLATFORM_ESP32 if (rval == PRODUCT_RNODE || rval == BOARD_RNODE_NG_20 || rval == BOARD_RNODE_NG_21 || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_10 || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21 || rval == PRODUCT_H32_V2 || rval == PRODUCT_H32_V3) { #elif PLATFORM == PLATFORM_NRF52 if (rval == PRODUCT_RAK4631 || rval == PRODUCT_HMBRW) { #else if (false) { #endif return true; } else { return false; } } bool eeprom_model_valid() { #if HAS_EEPROM model = EEPROM.read(eeprom_addr(ADDR_MODEL)); #elif MCU_VARIANT == MCU_NRF52 model = eeprom_read(eeprom_addr(ADDR_MODEL)); #endif #if BOARD_MODEL == BOARD_RNODE if (model == MODEL_A4 || model == MODEL_A9 || model == MODEL_FF || model == MODEL_FE) { #elif BOARD_MODEL == BOARD_RNODE_NG_20 if (model == MODEL_A3 || model == MODEL_A8) { #elif BOARD_MODEL == BOARD_RNODE_NG_21 if (model == MODEL_A2 || model == MODEL_A7) { #elif BOARD_MODEL == BOARD_RNODE_NG_22 if (model == MODEL_A1 || model == MODEL_A6) { #elif BOARD_MODEL == BOARD_HMBRW if (model == MODEL_FF || model == MODEL_FE) { #elif BOARD_MODEL == BOARD_TBEAM if (model == MODEL_E4 || model == MODEL_E9 || model == MODEL_E3 || model == MODEL_E8) { #elif BOARD_MODEL == BOARD_LORA32_V1_0 if (model == MODEL_BA || model == MODEL_BB) { #elif BOARD_MODEL == BOARD_LORA32_V2_0 if (model == MODEL_B3 || model == MODEL_B8) { #elif BOARD_MODEL == BOARD_LORA32_V2_1 if (model == MODEL_B4 || model == MODEL_B9) { #elif BOARD_MODEL == BOARD_HELTEC32_V2 if (model == MODEL_C4 || model == MODEL_C9) { #elif BOARD_MODEL == BOARD_HELTEC32_V3 if (model == MODEL_C5 || model == MODEL_CA) { #elif BOARD_MODEL == BOARD_RAK4631 if (model == MODEL_11 || model == MODEL_12) { #elif BOARD_MODEL == BOARD_HUZZAH32 if (model == MODEL_FF) { #elif BOARD_MODEL == BOARD_GENERIC_ESP32 if (model == MODEL_FF || model == MODEL_FE) { #else if (false) { #endif return true; } else { return false; } } bool eeprom_hwrev_valid() { #if HAS_EEPROM hwrev = EEPROM.read(eeprom_addr(ADDR_HW_REV)); #elif MCU_VARIANT == MCU_NRF52 hwrev = eeprom_read(eeprom_addr(ADDR_HW_REV)); #endif if (hwrev != 0x00 && hwrev != 0xFF) { return true; } else { return false; } } bool eeprom_checksum_valid() { char *data = (char*)malloc(CHECKSUMMED_SIZE); for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) { #if HAS_EEPROM char byte = EEPROM.read(eeprom_addr(i)); #elif MCU_VARIANT == MCU_NRF52 char byte = eeprom_read(eeprom_addr(i)); #endif data[i] = byte; } unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE); bool checksum_valid = true; for (uint8_t i = 0; i < 16; i++) { #if HAS_EEPROM uint8_t stored_chk_byte = EEPROM.read(eeprom_addr(ADDR_CHKSUM+i)); #elif MCU_VARIANT == MCU_NRF52 uint8_t stored_chk_byte = eeprom_read(eeprom_addr(ADDR_CHKSUM+i)); #endif uint8_t calced_chk_byte = (uint8_t)hash[i]; if (stored_chk_byte != calced_chk_byte) { checksum_valid = false; } } free(hash); free(data); return checksum_valid; } void bt_conf_save(bool is_enabled) { if (is_enabled) { eeprom_update(eeprom_addr(ADDR_CONF_BT), BT_ENABLE_BYTE); #if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52 // have to do a flush because we're only writing 1 byte and it syncs after 8 eeprom_flush(); #endif } else { eeprom_update(eeprom_addr(ADDR_CONF_BT), 0x00); #if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52 // have to do a flush because we're only writing 1 byte and it syncs after 8 eeprom_flush(); #endif } } void di_conf_save(uint8_t dint) { eeprom_update(eeprom_addr(ADDR_CONF_DINT), dint); } void da_conf_save(uint8_t dadr) { eeprom_update(eeprom_addr(ADDR_CONF_DADR), dadr); } bool eeprom_have_conf() { #if HAS_EEPROM if (EEPROM.read(eeprom_addr(ADDR_CONF_OK)) == CONF_OK_BYTE) { #elif MCU_VARIANT == MCU_NRF52 if (eeprom_read(eeprom_addr(ADDR_CONF_OK)) == CONF_OK_BYTE) { #endif return true; } else { return false; } } void eeprom_conf_load(RadioInterface* radio) { if (eeprom_have_conf()) { if (!(radio->getRadioOnline())) { #if HAS_EEPROM uint8_t sf = EEPROM.read(eeprom_addr(ADDR_CONF_SF)); uint8_t cr = EEPROM.read(eeprom_addr(ADDR_CONF_CR)); uint8_t txp = EEPROM.read(eeprom_addr(ADDR_CONF_TXP)); uint32_t freq = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x03); uint32_t bw = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x03); #elif MCU_VARIANT == MCU_NRF52 uint8_t sf = eeprom_read(eeprom_addr(ADDR_CONF_SF)); uint8_t cr = eeprom_read(eeprom_addr(ADDR_CONF_CR)); uint8_t txp = eeprom_read(eeprom_addr(ADDR_CONF_TXP)); uint32_t freq = (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x00) << 24 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x01) << 16 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x02) << 8 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x03); uint32_t bw = (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x00) << 24 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x01) << 16 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x02) << 8 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x03); #endif radio->setSpreadingFactor(sf); radio->setCodingRate4(cr); setTXPower(radio, txp); radio->setFrequency(freq); radio->setSignalBandwidth(bw); radio->updateBitrate(); } } } void eeprom_conf_save(RadioInterface* radio) { if (hw_ready && radio->getRadioOnline()) { eeprom_update(eeprom_addr(ADDR_CONF_SF), radio->getSpreadingFactor()); eeprom_update(eeprom_addr(ADDR_CONF_CR), radio->getCodingRate4()); eeprom_update(eeprom_addr(ADDR_CONF_TXP), radio->getTxPower()); uint32_t bw = radio->getSignalBandwidth(); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x00, bw>>24); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x01, bw>>16); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x02, bw>>8); eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x03, bw); uint32_t freq = radio->getFrequency(); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x00, freq>>24); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x01, freq>>16); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x02, freq>>8); eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x03, freq); eeprom_update(eeprom_addr(ADDR_CONF_OK), CONF_OK_BYTE); led_indicate_info(10); } else { led_indicate_warning(10); } } void eeprom_conf_delete() { eeprom_update(eeprom_addr(ADDR_CONF_OK), 0x00); } void unlock_rom() { led_indicate_error(50); eeprom_erase(); } typedef struct FIFOBuffer { unsigned char *begin; unsigned char *end; unsigned char * volatile head; unsigned char * volatile tail; } FIFOBuffer; inline bool fifo_isempty(const FIFOBuffer *f) { return f->head == f->tail; } inline bool fifo_isfull(const FIFOBuffer *f) { return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1); } inline void fifo_push(FIFOBuffer *f, unsigned char c) { *(f->tail) = c; if (f->tail == f->end) { f->tail = f->begin; } else { f->tail++; } } inline unsigned char fifo_pop(FIFOBuffer *f) { if(f->head == f->end) { f->head = f->begin; return *(f->end); } else { return *(f->head++); } } inline void fifo_flush(FIFOBuffer *f) { f->head = f->tail; } #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 static inline bool fifo_isempty_locked(const FIFOBuffer *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo_isempty(f); } return result; } static inline bool fifo_isfull_locked(const FIFOBuffer *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo_isfull(f); } return result; } static inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) { ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { fifo_push(f, c); } } #endif /* static inline unsigned char fifo_pop_locked(FIFOBuffer *f) { unsigned char c; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { c = fifo_pop(f); } return c; } */ inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) { f->head = f->tail = f->begin = buffer; f->end = buffer + size; } inline size_t fifo_len(FIFOBuffer *f) { return f->end - f->begin; } typedef struct FIFOBuffer16 { uint16_t *begin; uint16_t *end; uint16_t * volatile head; uint16_t * volatile tail; } FIFOBuffer16; inline bool fifo16_isempty(const FIFOBuffer16 *f) { return f->head == f->tail; } inline bool fifo16_isfull(const FIFOBuffer16 *f) { return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1); } inline void fifo16_push(FIFOBuffer16 *f, uint16_t c) { *(f->tail) = c; if (f->tail == f->end) { f->tail = f->begin; } else { f->tail++; } } inline uint16_t fifo16_pop(FIFOBuffer16 *f) { if(f->head == f->end) { f->head = f->begin; return *(f->end); } else { return *(f->head++); } } inline void fifo16_flush(FIFOBuffer16 *f) { f->head = f->tail; } #if MCU_VARIANT != MCU_ESP32 && MCU_VARIANT != MCU_NRF52 static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo16_isempty(f); } return result; } #endif /* static inline bool fifo16_isfull_locked(const FIFOBuffer16 *f) { bool result; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { result = fifo16_isfull(f); } return result; } static inline void fifo16_push_locked(FIFOBuffer16 *f, uint16_t c) { ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { fifo16_push(f, c); } } static inline size_t fifo16_pop_locked(FIFOBuffer16 *f) { size_t c; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { c = fifo16_pop(f); } return c; } */ inline void fifo16_init(FIFOBuffer16 *f, uint16_t *buffer, uint16_t size) { f->head = f->tail = f->begin = buffer; f->end = buffer + size; } inline uint16_t fifo16_len(FIFOBuffer16 *f) { return (f->end - f->begin); }