1395 lines
42 KiB
C++
1395 lines
42 KiB
C++
// Copyright (C) 2023, Mark Qvist
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
#include <Arduino.h>
|
|
#include <SPI.h>
|
|
#include "Utilities.h"
|
|
|
|
#if MCU_VARIANT == MCU_NRF52
|
|
#define INTERFACE_SPI
|
|
// Required because on RAK4631, non-default SPI pins must be initialised when class is declared.
|
|
SPIClass interface_spi[1] = {
|
|
// SX1262
|
|
SPIClass(
|
|
NRF_SPIM2,
|
|
interface_pins[0][3],
|
|
interface_pins[0][1],
|
|
interface_pins[0][2]
|
|
)
|
|
};
|
|
#endif
|
|
|
|
#ifndef INTERFACE_SPI
|
|
// INTERFACE_SPI is only required on NRF52 platforms, as the SPI pins are set in the class constructor and not by a setter method.
|
|
// Even if custom SPI interfaces are not needed, the array must exist to prevent compilation errors.
|
|
#define INTERFACE_SPI
|
|
SPIClass interface_spi[1];
|
|
#endif
|
|
|
|
FIFOBuffer serialFIFO;
|
|
uint8_t serialBuffer[CONFIG_UART_BUFFER_SIZE+1];
|
|
|
|
uint16_t packet_starts_buf[(CONFIG_QUEUE_MAX_LENGTH)+1];
|
|
|
|
uint16_t packet_lengths_buf[(CONFIG_QUEUE_MAX_LENGTH)+1];
|
|
|
|
FIFOBuffer16 packet_starts[INTERFACE_COUNT];
|
|
FIFOBuffer16 packet_lengths[INTERFACE_COUNT];
|
|
|
|
volatile uint8_t queue_height[INTERFACE_COUNT] = {0};
|
|
volatile uint16_t queued_bytes[INTERFACE_COUNT] = {0};
|
|
|
|
volatile uint16_t queue_cursor[INTERFACE_COUNT] = {0};
|
|
volatile uint16_t current_packet_start[INTERFACE_COUNT] = {0};
|
|
volatile bool serial_buffering = false;
|
|
#if HAS_BLUETOOTH || HAS_BLE == true
|
|
bool bt_init_ran = false;
|
|
#endif
|
|
|
|
#if HAS_CONSOLE
|
|
#include "Console.h"
|
|
#endif
|
|
|
|
char sbuf[128];
|
|
|
|
bool packet_ready = false;
|
|
|
|
volatile bool process_packet = false;
|
|
volatile uint8_t packet_interface = 0;
|
|
|
|
uint8_t *packet_queue[INTERFACE_COUNT];
|
|
|
|
void setup() {
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
boot_seq();
|
|
EEPROM.begin(EEPROM_SIZE);
|
|
Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE);
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_NRF52
|
|
if (!eeprom_begin()) {
|
|
Serial.write("EEPROM initialisation failed.\r\n");
|
|
}
|
|
#endif
|
|
|
|
// Seed the PRNG for CSMA R-value selection
|
|
# if MCU_VARIANT == MCU_ESP32
|
|
// On ESP32, get the seed value from the
|
|
// hardware RNG
|
|
int seed_val = (int)esp_random();
|
|
#else
|
|
// Otherwise, get a pseudo-random seed
|
|
// value from an unconnected analog pin
|
|
int seed_val = analogRead(0);
|
|
#endif
|
|
randomSeed(seed_val);
|
|
|
|
// Initialise serial communication
|
|
memset(serialBuffer, 0, sizeof(serialBuffer));
|
|
fifo_init(&serialFIFO, serialBuffer, CONFIG_UART_BUFFER_SIZE);
|
|
|
|
Serial.begin(serial_baudrate);
|
|
|
|
#if BOARD_MODEL != BOARD_RAK4631 && BOARD_MODEL != BOARD_T3S3
|
|
// Some boards need to wait until the hardware UART is set up before booting
|
|
// the full firmware. In the case of the RAK4631, the line below will wait
|
|
// until a serial connection is actually established with a master. Thus, it
|
|
// is disabled on this platform.
|
|
while (!Serial);
|
|
#endif
|
|
|
|
// Configure input and output pins
|
|
#if HAS_INPUT
|
|
input_init();
|
|
#endif
|
|
|
|
#if HAS_NP == false
|
|
pinMode(pin_led_rx, OUTPUT);
|
|
pinMode(pin_led_tx, OUTPUT);
|
|
#endif
|
|
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
if (interface_pins[i][9] != -1) {
|
|
pinMode(interface_pins[i][9], OUTPUT);
|
|
digitalWrite(interface_pins[i][9], HIGH);
|
|
}
|
|
}
|
|
|
|
// Initialise buffers
|
|
memset(pbuf, 0, sizeof(pbuf));
|
|
memset(cmdbuf, 0, sizeof(cmdbuf));
|
|
|
|
memset(packet_starts_buf, 0, sizeof(packet_starts_buf));
|
|
memset(packet_lengths_buf, 0, sizeof(packet_starts_buf));
|
|
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
fifo16_init(&packet_starts[i], packet_starts_buf, CONFIG_QUEUE_MAX_LENGTH);
|
|
fifo16_init(&packet_lengths[i], packet_lengths_buf, CONFIG_QUEUE_MAX_LENGTH);
|
|
packet_queue[i] = (uint8_t*)malloc(getQueueSize(i)+1);
|
|
}
|
|
|
|
// Create and configure interface objects
|
|
for (uint8_t i = 0; i < INTERFACE_COUNT; i++) {
|
|
switch (interfaces[i]) {
|
|
case SX126X:
|
|
case SX1262:
|
|
{
|
|
sx126x* obj;
|
|
// if default spi enabled
|
|
if (interface_cfg[i][0]) {
|
|
obj = new sx126x(i, &SPI, interface_cfg[i][1],
|
|
interface_cfg[i][2], interface_pins[i][0], interface_pins[i][1],
|
|
interface_pins[i][2], interface_pins[i][3], interface_pins[i][6],
|
|
interface_pins[i][5], interface_pins[i][4], interface_pins[i][8]);
|
|
}
|
|
else {
|
|
obj = new sx126x(i, &interface_spi[i], interface_cfg[i][1],
|
|
interface_cfg[i][2], interface_pins[i][0], interface_pins[i][1],
|
|
interface_pins[i][2], interface_pins[i][3], interface_pins[i][6],
|
|
interface_pins[i][5], interface_pins[i][4], interface_pins[i][8]);
|
|
}
|
|
interface_obj[i] = obj;
|
|
interface_obj_sorted[i] = obj;
|
|
break;
|
|
}
|
|
|
|
case SX127X:
|
|
case SX1276:
|
|
case SX1278:
|
|
{
|
|
sx127x* obj;
|
|
// if default spi enabled
|
|
if (interface_cfg[i][0]) {
|
|
obj = new sx127x(i, &SPI, interface_pins[i][0],
|
|
interface_pins[i][1], interface_pins[i][2], interface_pins[i][3],
|
|
interface_pins[i][6], interface_pins[i][5], interface_pins[i][4]);
|
|
}
|
|
else {
|
|
obj = new sx127x(i, &interface_spi[i], interface_pins[i][0],
|
|
interface_pins[i][1], interface_pins[i][2], interface_pins[i][3],
|
|
interface_pins[i][6], interface_pins[i][5], interface_pins[i][4]);
|
|
}
|
|
interface_obj[i] = obj;
|
|
interface_obj_sorted[i] = obj;
|
|
break;
|
|
}
|
|
|
|
case SX128X:
|
|
case SX1280:
|
|
{
|
|
sx128x* obj;
|
|
// if default spi enabled
|
|
if (interface_cfg[i][0]) {
|
|
obj = new sx128x(i, &SPI, interface_cfg[i][1],
|
|
interface_pins[i][0], interface_pins[i][1], interface_pins[i][2],
|
|
interface_pins[i][3], interface_pins[i][6], interface_pins[i][5],
|
|
interface_pins[i][4], interface_pins[i][8], interface_pins[i][7]);
|
|
}
|
|
else {
|
|
obj = new sx128x(i, &interface_spi[i], interface_cfg[i][1],
|
|
interface_pins[i][0], interface_pins[i][1], interface_pins[i][2],
|
|
interface_pins[i][3], interface_pins[i][6], interface_pins[i][5],
|
|
interface_pins[i][4], interface_pins[i][8], interface_pins[i][7]);
|
|
}
|
|
interface_obj[i] = obj;
|
|
interface_obj_sorted[i] = obj;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check installed transceiver chip(s) and probe boot parameters. If any of
|
|
// the configured modems cannot be initialised, do not boot
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
switch (interfaces[i]) {
|
|
case SX126X:
|
|
case SX1262:
|
|
case SX127X:
|
|
case SX1276:
|
|
case SX1278:
|
|
case SX128X:
|
|
case SX1280:
|
|
selected_radio = interface_obj[i];
|
|
break;
|
|
|
|
default:
|
|
modems_installed = false;
|
|
break;
|
|
}
|
|
if (selected_radio->preInit()) {
|
|
modems_installed = true;
|
|
uint32_t lfr = selected_radio->getFrequency();
|
|
if (lfr == 0) {
|
|
// Normal boot
|
|
} else if (lfr == M_FRQ_R) {
|
|
// Quick reboot
|
|
#if HAS_CONSOLE
|
|
if (rtc_get_reset_reason(0) == POWERON_RESET) {
|
|
console_active = true;
|
|
}
|
|
#endif
|
|
} else {
|
|
// Unknown boot
|
|
}
|
|
selected_radio->setFrequency(M_FRQ_S);
|
|
} else {
|
|
modems_installed = false;
|
|
}
|
|
if (!modems_installed) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if HAS_DISPLAY
|
|
#if HAS_EEPROM
|
|
if (EEPROM.read(eeprom_addr(ADDR_CONF_DSET)) != CONF_OK_BYTE) {
|
|
#elif MCU_VARIANT == MCU_NRF52
|
|
if (eeprom_read(eeprom_addr(ADDR_CONF_DSET)) != CONF_OK_BYTE) {
|
|
#endif
|
|
eeprom_update(eeprom_addr(ADDR_CONF_DSET), CONF_OK_BYTE);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_DINT), 0xFF);
|
|
}
|
|
#if DISPLAY == EINK_BW || DISPLAY == EINK_3C
|
|
// Poll and process incoming serial commands whilst e-ink display is
|
|
// refreshing to make device still seem responsive
|
|
display_add_callback(process_serial);
|
|
#endif
|
|
disp_ready = display_init();
|
|
update_display();
|
|
#endif
|
|
|
|
#if HAS_PMU == true
|
|
pmu_ready = init_pmu();
|
|
#endif
|
|
|
|
#if HAS_BLUETOOTH || HAS_BLE == true
|
|
bt_init();
|
|
bt_init_ran = true;
|
|
#endif
|
|
|
|
if (console_active) {
|
|
#if HAS_CONSOLE
|
|
console_start();
|
|
#else
|
|
kiss_indicate_reset();
|
|
#endif
|
|
} else {
|
|
kiss_indicate_reset();
|
|
}
|
|
|
|
// Validate board health, EEPROM and config
|
|
validate_status();
|
|
}
|
|
|
|
void lora_receive(RadioInterface* radio) {
|
|
if (!implicit) {
|
|
radio->receive();
|
|
} else {
|
|
radio->receive(implicit_l);
|
|
}
|
|
}
|
|
|
|
inline void kiss_write_packet(int index) {
|
|
// We need to convert the interface index to the command byte representation
|
|
uint8_t cmd_byte = getInterfaceCommandByte(index);
|
|
|
|
serial_write(FEND);
|
|
|
|
// Add index of interface the packet came from
|
|
serial_write(cmd_byte);
|
|
|
|
for (uint16_t i = 0; i < read_len; i++) {
|
|
uint8_t byte = pbuf[i];
|
|
if (byte == FEND) { serial_write(FESC); byte = TFEND; }
|
|
if (byte == FESC) { serial_write(FESC); byte = TFESC; }
|
|
serial_write(byte);
|
|
}
|
|
serial_write(FEND);
|
|
read_len = 0;
|
|
packet_ready = false;
|
|
}
|
|
|
|
inline void getPacketData(RadioInterface* radio, uint16_t len) {
|
|
while (len-- && read_len < MTU) {
|
|
pbuf[read_len++] = radio->read();
|
|
}
|
|
}
|
|
|
|
void ISR_VECT receive_callback(uint8_t index, int packet_size) {
|
|
if (!promisc) {
|
|
selected_radio = interface_obj[index];
|
|
|
|
// The standard operating mode allows large
|
|
// packets with a payload up to 500 bytes,
|
|
// by combining two raw LoRa packets.
|
|
// We read the 1-byte header and extract
|
|
// packet sequence number and split flags
|
|
uint8_t header = selected_radio->read(); packet_size--;
|
|
uint8_t sequence = packetSequence(header);
|
|
bool ready = false;
|
|
|
|
if (isSplitPacket(header) && seq == SEQ_UNSET) {
|
|
// This is the first part of a split
|
|
// packet, so we set the seq variable
|
|
// and add the data to the buffer
|
|
read_len = 0;
|
|
seq = sequence;
|
|
|
|
getPacketData(selected_radio, packet_size);
|
|
|
|
} else if (isSplitPacket(header) && seq == sequence) {
|
|
// This is the second part of a split
|
|
// packet, so we add it to the buffer
|
|
// and set the ready flag.
|
|
|
|
getPacketData(selected_radio, packet_size);
|
|
|
|
seq = SEQ_UNSET;
|
|
ready = true;
|
|
|
|
} else if (isSplitPacket(header) && seq != sequence) {
|
|
// This split packet does not carry the
|
|
// same sequence id, so we must assume
|
|
// that we are seeing the first part of
|
|
// a new split packet.
|
|
read_len = 0;
|
|
seq = sequence;
|
|
|
|
getPacketData(selected_radio, packet_size);
|
|
|
|
} else if (!isSplitPacket(header)) {
|
|
// This is not a split packet, so we
|
|
// just read it and set the ready
|
|
// flag to true.
|
|
|
|
if (seq != SEQ_UNSET) {
|
|
// If we already had part of a split
|
|
// packet in the buffer, we clear it.
|
|
read_len = 0;
|
|
seq = SEQ_UNSET;
|
|
}
|
|
|
|
getPacketData(selected_radio, packet_size);
|
|
ready = true;
|
|
}
|
|
|
|
if (ready) {
|
|
packet_ready = true;
|
|
}
|
|
} else {
|
|
// In promiscuous mode, raw packets are
|
|
// output directly to the host
|
|
read_len = 0;
|
|
|
|
getPacketData(selected_radio, packet_size);
|
|
packet_ready = true;
|
|
}
|
|
last_rx = millis();
|
|
}
|
|
|
|
bool startRadio(RadioInterface* radio) {
|
|
update_radio_lock(radio);
|
|
|
|
if (modems_installed && !console_active) {
|
|
if (!radio->getRadioLock() && hw_ready) {
|
|
if (!radio->begin()) {
|
|
// The radio could not be started.
|
|
// Indicate this failure over both the
|
|
// serial port and with the onboard LEDs
|
|
kiss_indicate_error(ERROR_INITRADIO);
|
|
led_indicate_error(0);
|
|
return false;
|
|
} else {
|
|
radio->enableCrc();
|
|
|
|
radio->onReceive(receive_callback);
|
|
|
|
radio->updateBitrate();
|
|
sort_interfaces();
|
|
kiss_indicate_phy_stats(radio);
|
|
|
|
lora_receive(radio);
|
|
|
|
// Flash an info pattern to indicate
|
|
// that the radio is now on
|
|
kiss_indicate_radiostate(radio);
|
|
led_indicate_info(3);
|
|
return true;
|
|
}
|
|
|
|
} else {
|
|
// Flash a warning pattern to indicate
|
|
// that the radio was locked, and thus
|
|
// not started
|
|
kiss_indicate_radiostate(radio);
|
|
led_indicate_warning(3);
|
|
return false;
|
|
}
|
|
} else {
|
|
// If radio is already on, we silently
|
|
// ignore the request.
|
|
kiss_indicate_radiostate(radio);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void stopRadio(RadioInterface* radio) {
|
|
radio->end();
|
|
sort_interfaces();
|
|
}
|
|
|
|
void update_radio_lock(RadioInterface* radio) {
|
|
if (radio->getFrequency() != 0 && radio->getSignalBandwidth() != 0 && radio->getTxPower() != 0xFF && radio->getSpreadingFactor() != 0) {
|
|
radio->setRadioLock(false);
|
|
} else {
|
|
radio->setRadioLock(true);
|
|
}
|
|
}
|
|
|
|
// Check if the queue is full for the selected radio.
|
|
// Returns true if full, false if not
|
|
bool queueFull(RadioInterface* radio) {
|
|
return (queue_height[radio->getIndex()] >= (CONFIG_QUEUE_MAX_LENGTH) || queued_bytes[radio->getIndex()] >= (getQueueSize(radio->getIndex())));
|
|
}
|
|
|
|
volatile bool queue_flushing = false;
|
|
|
|
// Flushes all packets for the interface
|
|
void flushQueue(RadioInterface* radio) {
|
|
uint8_t index = radio->getIndex();
|
|
if (!queue_flushing) {
|
|
queue_flushing = true;
|
|
|
|
led_tx_on();
|
|
uint16_t processed = 0;
|
|
uint8_t data_byte;
|
|
|
|
while (!fifo16_isempty(&packet_starts[index])) {
|
|
uint16_t start = fifo16_pop(&packet_starts[index]);
|
|
uint16_t length = fifo16_pop(&packet_lengths[index]);
|
|
|
|
if (length >= MIN_L && length <= MTU) {
|
|
for (uint16_t i = 0; i < length; i++) {
|
|
uint16_t pos = (start+i)%(getQueueSize(index));
|
|
tbuf[i] = packet_queue[index][pos];
|
|
}
|
|
transmit(radio, length);
|
|
processed++;
|
|
}
|
|
}
|
|
|
|
lora_receive(radio);
|
|
led_tx_off();
|
|
|
|
radio->setPostTxYieldTimeout(millis()+(lora_post_tx_yield_slots*selected_radio->getCSMASlotMS()));
|
|
}
|
|
|
|
queue_height[index] = 0;
|
|
queued_bytes[index] = 0;
|
|
selected_radio->updateAirtime();
|
|
queue_flushing = false;
|
|
}
|
|
|
|
void transmit(RadioInterface* radio, uint16_t size) {
|
|
if (radio->getRadioOnline()) {
|
|
if (!promisc) {
|
|
uint16_t written = 0;
|
|
uint8_t header = random(256) & 0xF0;
|
|
|
|
if (size > SINGLE_MTU - HEADER_L) {
|
|
header = header | FLAG_SPLIT;
|
|
}
|
|
|
|
|
|
radio->beginPacket();
|
|
radio->write(header); written++;
|
|
|
|
for (uint16_t i=0; i < size; i++) {
|
|
radio->write(tbuf[i]);
|
|
|
|
written++;
|
|
|
|
if (written == 255) {
|
|
radio->endPacket(); radio->addAirtime(written);
|
|
radio->beginPacket();
|
|
radio->write(header);
|
|
written = 1;
|
|
}
|
|
}
|
|
|
|
radio->endPacket(); radio->addAirtime(written);
|
|
} else {
|
|
// In promiscuous mode, we only send out
|
|
// plain raw LoRa packets with a maximum
|
|
// payload of 255 bytes
|
|
led_tx_on();
|
|
uint16_t written = 0;
|
|
|
|
// Cap packets at 255 bytes
|
|
if (size > SINGLE_MTU) {
|
|
size = SINGLE_MTU;
|
|
}
|
|
|
|
// If implicit header mode has been set,
|
|
// set packet length to payload data length
|
|
if (!implicit) {
|
|
radio->beginPacket();
|
|
} else {
|
|
radio->beginPacket(size);
|
|
}
|
|
|
|
for (uint16_t i=0; i < size; i++) {
|
|
radio->write(tbuf[i]);
|
|
|
|
written++;
|
|
}
|
|
radio->endPacket(); radio->addAirtime(written);
|
|
}
|
|
last_tx = millis();
|
|
} else {
|
|
kiss_indicate_error(ERROR_TXFAILED);
|
|
led_indicate_error(5);
|
|
}
|
|
}
|
|
|
|
void serialCallback(uint8_t sbyte) {
|
|
if (IN_FRAME && sbyte == FEND &&
|
|
(command == CMD_INT0_DATA
|
|
|| command == CMD_INT1_DATA
|
|
|| command == CMD_INT2_DATA
|
|
|| command == CMD_INT3_DATA
|
|
|| command == CMD_INT4_DATA
|
|
|| command == CMD_INT5_DATA
|
|
|| command == CMD_INT6_DATA
|
|
|| command == CMD_INT7_DATA
|
|
|| command == CMD_INT8_DATA
|
|
|| command == CMD_INT9_DATA
|
|
|| command == CMD_INT10_DATA
|
|
|| command == CMD_INT11_DATA)) {
|
|
IN_FRAME = false;
|
|
|
|
if (getInterfaceIndex(command) < INTERFACE_COUNT) {
|
|
uint8_t index = getInterfaceIndex(command);
|
|
if (!fifo16_isfull(&packet_starts[index]) && (queued_bytes[index] < (getQueueSize(index)))) {
|
|
uint16_t s = current_packet_start[index];
|
|
uint16_t e = queue_cursor[index]-1; if (e == -1) e = (getQueueSize(index))-1;
|
|
uint16_t l;
|
|
|
|
if (s != e) {
|
|
l = (s < e) ? e - s + 1: (getQueueSize(index)) - s + e + 1;
|
|
} else {
|
|
l = 1;
|
|
}
|
|
|
|
if (l >= MIN_L) {
|
|
queue_height[index]++;
|
|
|
|
fifo16_push(&packet_starts[index], s);
|
|
fifo16_push(&packet_lengths[index], l);
|
|
current_packet_start[index] = queue_cursor[index];
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
} else if (sbyte == FEND) {
|
|
IN_FRAME = true;
|
|
command = CMD_UNKNOWN;
|
|
frame_len = 0;
|
|
} else if (IN_FRAME && frame_len < MTU) {
|
|
// Have a look at the command byte first
|
|
if (frame_len == 0 && command == CMD_UNKNOWN) {
|
|
command = sbyte;
|
|
if (command == CMD_SEL_INT0
|
|
|| command == CMD_SEL_INT1
|
|
|| command == CMD_SEL_INT2
|
|
|| command == CMD_SEL_INT3
|
|
|| command == CMD_SEL_INT4
|
|
|| command == CMD_SEL_INT5
|
|
|| command == CMD_SEL_INT6
|
|
|| command == CMD_SEL_INT7
|
|
|| command == CMD_SEL_INT8
|
|
|| command == CMD_SEL_INT9
|
|
|| command == CMD_SEL_INT10
|
|
|| command == CMD_SEL_INT11) {
|
|
interface = getInterfaceIndex(command);
|
|
}
|
|
|
|
} else if (command == CMD_INT0_DATA
|
|
|| command == CMD_INT1_DATA
|
|
|| command == CMD_INT2_DATA
|
|
|| command == CMD_INT3_DATA
|
|
|| command == CMD_INT4_DATA
|
|
|| command == CMD_INT5_DATA
|
|
|| command == CMD_INT6_DATA
|
|
|| command == CMD_INT7_DATA
|
|
|| command == CMD_INT8_DATA
|
|
|| command == CMD_INT9_DATA
|
|
|| command == CMD_INT10_DATA
|
|
|| command == CMD_INT11_DATA) {
|
|
if (bt_state != BT_STATE_CONNECTED) cable_state = CABLE_STATE_CONNECTED;
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
|
|
if (getInterfaceIndex(command) < INTERFACE_COUNT) {
|
|
uint8_t index = getInterfaceIndex(command);
|
|
if (queue_height[index] < CONFIG_QUEUE_MAX_LENGTH && queued_bytes[index] < (getQueueSize(index))) {
|
|
queued_bytes[index]++;
|
|
packet_queue[index][queue_cursor[index]++] = sbyte;
|
|
if (queue_cursor[index] == (getQueueSize(index))) queue_cursor[index] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else if (command == CMD_INTERFACES) {
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
kiss_indicate_interface(i);
|
|
}
|
|
} else if (command == CMD_FREQUENCY) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 4) {
|
|
uint32_t freq = (uint32_t)cmdbuf[0] << 24 | (uint32_t)cmdbuf[1] << 16 | (uint32_t)cmdbuf[2] << 8 | (uint32_t)cmdbuf[3];
|
|
|
|
selected_radio = interface_obj[interface];
|
|
if (freq == 0) {
|
|
kiss_indicate_frequency(selected_radio);
|
|
} else {
|
|
if (op_mode == MODE_HOST) selected_radio->setFrequency(freq);
|
|
kiss_indicate_frequency(selected_radio);
|
|
}
|
|
interface = 0;
|
|
}
|
|
} else if (command == CMD_BANDWIDTH) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 4) {
|
|
uint32_t bw = (uint32_t)cmdbuf[0] << 24 | (uint32_t)cmdbuf[1] << 16 | (uint32_t)cmdbuf[2] << 8 | (uint32_t)cmdbuf[3];
|
|
|
|
selected_radio = interface_obj[interface];
|
|
|
|
if (bw == 0) {
|
|
kiss_indicate_bandwidth(selected_radio);
|
|
} else {
|
|
if (op_mode == MODE_HOST) selected_radio->setSignalBandwidth(bw);
|
|
selected_radio->updateBitrate();
|
|
sort_interfaces();
|
|
kiss_indicate_bandwidth(selected_radio);
|
|
kiss_indicate_phy_stats(selected_radio);
|
|
}
|
|
interface = 0;
|
|
}
|
|
} else if (command == CMD_TXPOWER) {
|
|
selected_radio = interface_obj[interface];
|
|
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_txpower(selected_radio);
|
|
} else {
|
|
int8_t txp = (int8_t)sbyte;
|
|
|
|
if (op_mode == MODE_HOST) setTXPower(selected_radio, txp);
|
|
kiss_indicate_txpower(selected_radio);
|
|
}
|
|
interface = 0;
|
|
} else if (command == CMD_SF) {
|
|
selected_radio = interface_obj[interface];
|
|
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_spreadingfactor(selected_radio);
|
|
} else {
|
|
int sf = sbyte;
|
|
if (sf < 5) sf = 5;
|
|
if (sf > 12) sf = 12;
|
|
|
|
if (op_mode == MODE_HOST) selected_radio->setSpreadingFactor(sf);
|
|
selected_radio->updateBitrate();
|
|
sort_interfaces();
|
|
kiss_indicate_spreadingfactor(selected_radio);
|
|
kiss_indicate_phy_stats(selected_radio);
|
|
}
|
|
interface = 0;
|
|
} else if (command == CMD_CR) {
|
|
selected_radio = interface_obj[interface];
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_codingrate(selected_radio);
|
|
} else {
|
|
int cr = sbyte;
|
|
if (cr < 5) cr = 5;
|
|
if (cr > 8) cr = 8;
|
|
|
|
if (op_mode == MODE_HOST) selected_radio->setCodingRate4(cr);
|
|
selected_radio->updateBitrate();
|
|
sort_interfaces();
|
|
kiss_indicate_codingrate(selected_radio);
|
|
kiss_indicate_phy_stats(selected_radio);
|
|
}
|
|
interface = 0;
|
|
} else if (command == CMD_IMPLICIT) {
|
|
set_implicit_length(sbyte);
|
|
kiss_indicate_implicit_length();
|
|
} else if (command == CMD_LEAVE) {
|
|
if (sbyte == 0xFF) {
|
|
cable_state = CABLE_STATE_DISCONNECTED;
|
|
//current_rssi = -292;
|
|
last_rssi = -292;
|
|
last_rssi_raw = 0x00;
|
|
last_snr_raw = 0x80;
|
|
}
|
|
} else if (command == CMD_RADIO_STATE) {
|
|
selected_radio = interface_obj[interface];
|
|
if (bt_state != BT_STATE_CONNECTED) cable_state = CABLE_STATE_CONNECTED;
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_radiostate(selected_radio);
|
|
} else if (sbyte == 0x00) {
|
|
stopRadio(selected_radio);
|
|
kiss_indicate_radiostate(selected_radio);
|
|
} else if (sbyte == 0x01) {
|
|
startRadio(selected_radio);
|
|
kiss_indicate_radiostate(selected_radio);
|
|
}
|
|
interface = 0;
|
|
} else if (command == CMD_ST_ALOCK) {
|
|
selected_radio = interface_obj[interface];
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 2) {
|
|
uint16_t at = (uint16_t)cmdbuf[0] << 8 | (uint16_t)cmdbuf[1];
|
|
|
|
if (at == 0) {
|
|
selected_radio->setSTALock(0.0);
|
|
} else {
|
|
int st_airtime_limit = (float)at/(100.0*100.0);
|
|
if (st_airtime_limit >= 1.0) { st_airtime_limit = 0.0; }
|
|
selected_radio->setSTALock(st_airtime_limit);
|
|
}
|
|
kiss_indicate_st_alock(selected_radio);
|
|
}
|
|
interface = 0;
|
|
} else if (command == CMD_LT_ALOCK) {
|
|
selected_radio = interface_obj[interface];
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 2) {
|
|
uint16_t at = (uint16_t)cmdbuf[0] << 8 | (uint16_t)cmdbuf[1];
|
|
|
|
if (at == 0) {
|
|
selected_radio->setLTALock(0.0);
|
|
} else {
|
|
int lt_airtime_limit = (float)at/(100.0*100.0);
|
|
if (lt_airtime_limit >= 1.0) { lt_airtime_limit = 0.0; }
|
|
selected_radio->setLTALock(lt_airtime_limit);
|
|
}
|
|
kiss_indicate_lt_alock(selected_radio);
|
|
}
|
|
interface = 0;
|
|
} else if (command == CMD_STAT_RX) {
|
|
kiss_indicate_stat_rx();
|
|
} else if (command == CMD_STAT_TX) {
|
|
kiss_indicate_stat_tx();
|
|
} else if (command == CMD_STAT_RSSI) {
|
|
kiss_indicate_stat_rssi();
|
|
} else if (command == CMD_RADIO_LOCK) {
|
|
selected_radio = interface_obj[interface];
|
|
update_radio_lock(selected_radio);
|
|
kiss_indicate_radio_lock(selected_radio);
|
|
interface = 0;
|
|
} else if (command == CMD_BLINK) {
|
|
led_indicate_info(sbyte);
|
|
} else if (command == CMD_RANDOM) {
|
|
// pick an interface at random to get data from
|
|
int int_index = random(INTERFACE_COUNT);
|
|
selected_radio = interface_obj[int_index];
|
|
kiss_indicate_random(getRandom(selected_radio));
|
|
interface = 0;
|
|
} else if (command == CMD_DETECT) {
|
|
if (sbyte == DETECT_REQ) {
|
|
if (bt_state != BT_STATE_CONNECTED) cable_state = CABLE_STATE_CONNECTED;
|
|
kiss_indicate_detect();
|
|
}
|
|
} else if (command == CMD_PROMISC) {
|
|
if (sbyte == 0x01) {
|
|
promisc_enable();
|
|
} else if (sbyte == 0x00) {
|
|
promisc_disable();
|
|
}
|
|
kiss_indicate_promisc();
|
|
} else if (command == CMD_READY) {
|
|
selected_radio = interface_obj[interface];
|
|
if (!queueFull(selected_radio)) {
|
|
kiss_indicate_ready();
|
|
} else {
|
|
kiss_indicate_not_ready();
|
|
}
|
|
} else if (command == CMD_UNLOCK_ROM) {
|
|
if (sbyte == ROM_UNLOCK_BYTE) {
|
|
unlock_rom();
|
|
}
|
|
} else if (command == CMD_RESET) {
|
|
if (sbyte == CMD_RESET_BYTE) {
|
|
hard_reset();
|
|
}
|
|
} else if (command == CMD_ROM_READ) {
|
|
kiss_dump_eeprom();
|
|
} else if (command == CMD_ROM_WRITE) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == 2) {
|
|
eeprom_write(cmdbuf[0], cmdbuf[1]);
|
|
}
|
|
} else if (command == CMD_FW_VERSION) {
|
|
kiss_indicate_version();
|
|
} else if (command == CMD_PLATFORM) {
|
|
kiss_indicate_platform();
|
|
} else if (command == CMD_MCU) {
|
|
kiss_indicate_mcu();
|
|
} else if (command == CMD_BOARD) {
|
|
kiss_indicate_board();
|
|
} else if (command == CMD_CONF_SAVE) {
|
|
// todo: add extra space in EEPROM so this isn't hardcoded
|
|
eeprom_conf_save(interface_obj[0]);
|
|
} else if (command == CMD_CONF_DELETE) {
|
|
eeprom_conf_delete();
|
|
} else if (command == CMD_FB_EXT) {
|
|
#if HAS_DISPLAY == true
|
|
if (sbyte == 0xFF) {
|
|
kiss_indicate_fbstate();
|
|
} else if (sbyte == 0x00) {
|
|
ext_fb_disable();
|
|
kiss_indicate_fbstate();
|
|
} else if (sbyte == 0x01) {
|
|
ext_fb_enable();
|
|
kiss_indicate_fbstate();
|
|
}
|
|
#endif
|
|
} else if (command == CMD_FB_WRITE) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
#if HAS_DISPLAY
|
|
if (frame_len == 9) {
|
|
uint8_t line = cmdbuf[0];
|
|
if (line > 63) line = 63;
|
|
int fb_o = line*8;
|
|
memcpy(fb+fb_o, cmdbuf+1, 8);
|
|
}
|
|
#endif
|
|
} else if (command == CMD_FB_READ) {
|
|
if (sbyte != 0x00) {
|
|
kiss_indicate_fb();
|
|
}
|
|
} else if (command == CMD_DEV_HASH) {
|
|
if (sbyte != 0x00) {
|
|
kiss_indicate_device_hash();
|
|
}
|
|
} else if (command == CMD_DEV_SIG) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == DEV_SIG_LEN) {
|
|
memcpy(dev_sig, cmdbuf, DEV_SIG_LEN);
|
|
device_save_signature();
|
|
}
|
|
} else if (command == CMD_FW_UPD) {
|
|
if (sbyte == 0x01) {
|
|
firmware_update_mode = true;
|
|
} else {
|
|
firmware_update_mode = false;
|
|
}
|
|
} else if (command == CMD_HASHES) {
|
|
if (sbyte == 0x01) {
|
|
kiss_indicate_target_fw_hash();
|
|
} else if (sbyte == 0x02) {
|
|
kiss_indicate_fw_hash();
|
|
} else if (sbyte == 0x03) {
|
|
kiss_indicate_bootloader_hash();
|
|
} else if (sbyte == 0x04) {
|
|
kiss_indicate_partition_table_hash();
|
|
}
|
|
} else if (command == CMD_FW_HASH) {
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
if (frame_len < CMD_L) cmdbuf[frame_len++] = sbyte;
|
|
}
|
|
|
|
if (frame_len == DEV_HASH_LEN) {
|
|
memcpy(dev_firmware_hash_target, cmdbuf, DEV_HASH_LEN);
|
|
device_save_firmware_hash();
|
|
}
|
|
} else if (command == CMD_BT_CTRL) {
|
|
#if HAS_BLUETOOTH || HAS_BLE
|
|
if (sbyte == 0x00) {
|
|
bt_stop();
|
|
bt_conf_save(false);
|
|
} else if (sbyte == 0x01) {
|
|
bt_start();
|
|
bt_conf_save(true);
|
|
} else if (sbyte == 0x02) {
|
|
bt_enable_pairing();
|
|
}
|
|
#endif
|
|
} else if (command == CMD_DISP_INT) {
|
|
#if HAS_DISPLAY
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
display_intensity = sbyte;
|
|
di_conf_save(display_intensity);
|
|
}
|
|
|
|
#endif
|
|
} else if (command == CMD_DISP_ADDR) {
|
|
#if HAS_DISPLAY
|
|
if (sbyte == FESC) {
|
|
ESCAPE = true;
|
|
} else {
|
|
if (ESCAPE) {
|
|
if (sbyte == TFEND) sbyte = FEND;
|
|
if (sbyte == TFESC) sbyte = FESC;
|
|
ESCAPE = false;
|
|
}
|
|
display_addr = sbyte;
|
|
da_conf_save(display_addr);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portMUX_TYPE update_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
#endif
|
|
|
|
void validate_status() {
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
// TODO: Get ESP32 boot flags
|
|
uint8_t boot_flags = 0x02;
|
|
uint8_t F_POR = 0x00;
|
|
uint8_t F_BOR = 0x00;
|
|
uint8_t F_WDR = 0x01;
|
|
#elif MCU_VARIANT == MCU_NRF52
|
|
// TODO: Get NRF52 boot flags
|
|
uint8_t boot_flags = 0x02;
|
|
uint8_t F_POR = 0x00;
|
|
uint8_t F_BOR = 0x00;
|
|
uint8_t F_WDR = 0x01;
|
|
#endif
|
|
|
|
if (hw_ready || device_init_done) {
|
|
hw_ready = false;
|
|
Serial.write("Error, invalid hardware check state\r\n");
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
led_indicate_boot_error();
|
|
}
|
|
|
|
if (boot_flags & (1<<F_POR)) {
|
|
boot_vector = START_FROM_POWERON;
|
|
} else if (boot_flags & (1<<F_BOR)) {
|
|
boot_vector = START_FROM_BROWNOUT;
|
|
} else if (boot_flags & (1<<F_WDR)) {
|
|
boot_vector = START_FROM_BOOTLOADER;
|
|
} else {
|
|
Serial.write("Error, indeterminate boot vector\r\n");
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
led_indicate_boot_error();
|
|
}
|
|
|
|
if (boot_vector == START_FROM_BOOTLOADER || boot_vector == START_FROM_POWERON) {
|
|
if (eeprom_lock_set()) {
|
|
if (eeprom_product_valid() && eeprom_model_valid() && eeprom_hwrev_valid()) {
|
|
if (eeprom_checksum_valid()) {
|
|
eeprom_ok = true;
|
|
if (modems_installed) {
|
|
if (device_init()) {
|
|
hw_ready = true;
|
|
} else {
|
|
hw_ready = false;
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
Serial.write("No valid radio module found\r\n");
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
hw_ready = false;
|
|
Serial.write("Error, incorrect boot vector\r\n");
|
|
#if HAS_DISPLAY
|
|
if (disp_ready) {
|
|
device_init_done = true;
|
|
update_display();
|
|
}
|
|
#endif
|
|
led_indicate_boot_error();
|
|
}
|
|
}
|
|
|
|
void loop() {
|
|
packet_poll();
|
|
|
|
bool ready = false;
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
selected_radio = interface_obj[i];
|
|
if (selected_radio->getRadioOnline()) {
|
|
selected_radio->checkModemStatus();
|
|
ready = true;
|
|
}
|
|
}
|
|
|
|
|
|
// If at least one radio is online then we can continue
|
|
if (ready) {
|
|
if (packet_ready) {
|
|
selected_radio = interface_obj[packet_interface];
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portENTER_CRITICAL(&update_lock);
|
|
#elif MCU_VARIANT == MCU_NRF52
|
|
portENTER_CRITICAL();
|
|
#endif
|
|
last_rssi = selected_radio->packetRssi();
|
|
last_snr_raw = selected_radio->packetSnrRaw();
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portEXIT_CRITICAL(&update_lock);
|
|
#elif MCU_VARIANT == MCU_NRF52
|
|
portEXIT_CRITICAL();
|
|
#endif
|
|
kiss_indicate_stat_rssi();
|
|
kiss_indicate_stat_snr();
|
|
kiss_write_packet(packet_interface);
|
|
}
|
|
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
selected_radio = interface_obj_sorted[i];
|
|
|
|
if (selected_radio->calculateALock() || !selected_radio->getRadioOnline()) {
|
|
// skip this interface
|
|
continue;
|
|
}
|
|
|
|
// If a higher data rate interface has received a packet after its
|
|
// loop, it still needs to be the first to transmit, so check if this
|
|
// is the case.
|
|
for (int j = 0; j < INTERFACE_COUNT; j++) {
|
|
if (!interface_obj_sorted[j]->calculateALock() || interface_obj_sorted[j]->getRadioOnline()) {
|
|
if (interface_obj_sorted[j]->getBitrate() > selected_radio->getBitrate()) {
|
|
if (queue_height[interface_obj_sorted[j]->getIndex()] > 0) {
|
|
selected_radio = interface_obj_sorted[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (queue_height[selected_radio->getIndex()] > 0) {
|
|
long check_time = millis();
|
|
if (check_time > selected_radio->getPostTxYieldTimeout()) {
|
|
if (selected_radio->getDCDWaiting() && (check_time >= selected_radio->getDCDWaitUntil())) { selected_radio->setDCDWaiting(false); }
|
|
if (!selected_radio->getDCDWaiting()) {
|
|
// todo, will the delay here slow down transmission with
|
|
// multiple interfaces? needs investigation
|
|
for (uint8_t dcd_i = 0; dcd_i < DCD_THRESHOLD*2; dcd_i++) {
|
|
delay(STATUS_INTERVAL_MS); selected_radio->updateModemStatus();
|
|
}
|
|
|
|
if (!selected_radio->getDCD()) {
|
|
uint8_t csma_r = (uint8_t)random(256);
|
|
if (selected_radio->getCSMAp() >= csma_r) {
|
|
flushQueue(selected_radio);
|
|
} else {
|
|
selected_radio->setDCDWaiting(true);
|
|
selected_radio->setDCDWaitUntil(millis()+selected_radio->getCSMASlotMS());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} else {
|
|
if (hw_ready) {
|
|
if (console_active) {
|
|
#if HAS_CONSOLE
|
|
console_loop();
|
|
#endif
|
|
} else {
|
|
led_indicate_standby();
|
|
}
|
|
} else {
|
|
led_indicate_not_ready();
|
|
// shut down all radio interfaces
|
|
for (int i = 0; i < INTERFACE_COUNT; i++) {
|
|
stopRadio(interface_obj[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
buffer_serial();
|
|
if (!fifo_isempty(&serialFIFO)) serial_poll();
|
|
|
|
#if HAS_DISPLAY
|
|
#if DISPLAY == OLED
|
|
if (disp_ready) update_display();
|
|
#elif DISPLAY == EINK_BW || DISPLAY == EINK_3C
|
|
// Display refreshes take so long on e-paper displays that they can disrupt
|
|
// the regular operation of the device. To combat this the time it is
|
|
// chosen to do so must be strategically chosen. Particularly on the
|
|
// RAK4631, the display and the potentially installed SX1280 modem share
|
|
// the same SPI bus. Thus it is not possible to solve this by utilising the
|
|
// callback functionality to poll the modem in this case. todo, this may be
|
|
// able to be improved in the future.
|
|
if (disp_ready) {
|
|
if (millis() - last_tx >= 4000) {
|
|
if (millis() - last_rx >= 1000) {
|
|
update_display();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_PMU
|
|
if (pmu_ready) update_pmu();
|
|
#endif
|
|
|
|
#if HAS_BLUETOOTH || HAS_BLE == true
|
|
if (!console_active && bt_ready) update_bt();
|
|
#endif
|
|
|
|
#if HAS_INPUT
|
|
input_read();
|
|
#endif
|
|
}
|
|
|
|
void process_serial() {
|
|
buffer_serial();
|
|
if (!fifo_isempty(&serialFIFO)) serial_poll();
|
|
}
|
|
|
|
void sleep_now() {
|
|
#if HAS_SLEEP == true
|
|
#if BOARD_MODEL == BOARD_T3S3
|
|
display_intensity = 0;
|
|
update_display(true);
|
|
#endif
|
|
#if PIN_DISP_SLEEP >= 0
|
|
pinMode(PIN_DISP_SLEEP, OUTPUT);
|
|
digitalWrite(PIN_DISP_SLEEP, DISP_SLEEP_LEVEL);
|
|
#endif
|
|
esp_sleep_enable_ext0_wakeup(PIN_WAKEUP, WAKEUP_LEVEL);
|
|
esp_deep_sleep_start();
|
|
#endif
|
|
}
|
|
|
|
void button_event(uint8_t event, unsigned long duration) {
|
|
if (duration > 2000) {
|
|
sleep_now();
|
|
}
|
|
}
|
|
|
|
void poll_buffers() {
|
|
process_serial();
|
|
}
|
|
|
|
void packet_poll() {
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portENTER_CRITICAL(&update_lock);
|
|
#elif MCU_VARIANT == MCU_NRF52
|
|
portENTER_CRITICAL();
|
|
#endif
|
|
// If we have received a packet on an interface which needs to be processed
|
|
if (process_packet) {
|
|
selected_radio = interface_obj[packet_interface];
|
|
selected_radio->clearIRQStatus();
|
|
selected_radio->handleDio0Rise();
|
|
process_packet = false;
|
|
}
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
portEXIT_CRITICAL(&update_lock);
|
|
#elif MCU_VARIANT == MCU_NRF52
|
|
portEXIT_CRITICAL();
|
|
#endif
|
|
}
|
|
|
|
volatile bool serial_polling = false;
|
|
void serial_poll() {
|
|
serial_polling = true;
|
|
|
|
while (!fifo_isempty(&serialFIFO)) {
|
|
char sbyte = fifo_pop(&serialFIFO);
|
|
serialCallback(sbyte);
|
|
}
|
|
|
|
serial_polling = false;
|
|
}
|
|
|
|
#define MAX_CYCLES 20
|
|
|
|
void buffer_serial() {
|
|
if (!serial_buffering) {
|
|
serial_buffering = true;
|
|
|
|
uint8_t c = 0;
|
|
|
|
#if HAS_BLUETOOTH || HAS_BLE == true
|
|
while (
|
|
c < MAX_CYCLES &&
|
|
( (bt_state != BT_STATE_CONNECTED && Serial.available()) || (bt_state == BT_STATE_CONNECTED && SerialBT.available()) )
|
|
)
|
|
#else
|
|
while (c < MAX_CYCLES && Serial.available())
|
|
#endif
|
|
{
|
|
c++;
|
|
|
|
#if HAS_BLUETOOTH || HAS_BLE == true
|
|
if (bt_state == BT_STATE_CONNECTED) {
|
|
if (!fifo_isfull(&serialFIFO)) {
|
|
fifo_push(&serialFIFO, SerialBT.read());
|
|
}
|
|
} else {
|
|
if (!fifo_isfull(&serialFIFO)) {
|
|
fifo_push(&serialFIFO, Serial.read());
|
|
}
|
|
}
|
|
#else
|
|
if (!fifo_isfull(&serialFIFO)) {
|
|
fifo_push(&serialFIFO, Serial.read());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
serial_buffering = false;
|
|
}
|
|
}
|