2019-01-09 19:31:46 +01:00
|
|
|
#pragma once
|
|
|
|
|
2019-05-12 17:52:23 +02:00
|
|
|
#include <stdint.h>
|
2019-01-09 19:31:46 +01:00
|
|
|
typedef float fptp_t;
|
|
|
|
typedef uint8_t uc_t;
|
|
|
|
|
|
|
|
typedef enum
|
|
|
|
{
|
|
|
|
DL_C_IMPL = 0,
|
|
|
|
DL_XTENSA_IMPL = 1
|
|
|
|
} dl_conv_mode;
|
|
|
|
|
|
|
|
typedef enum
|
|
|
|
{
|
|
|
|
INPUT_UINT8 = 0,
|
|
|
|
INPUT_FLOAT = 1,
|
|
|
|
} dl_op_type;
|
|
|
|
|
|
|
|
typedef enum
|
|
|
|
{
|
|
|
|
PADDING_VALID = 0,
|
|
|
|
PADDING_SAME = 1,
|
|
|
|
} dl_padding_type;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Matrix for 3d
|
|
|
|
* @Warning: the sequence of variables is fixed, cannot be modified, otherwise there will be errors in esp_dsp_dot_float
|
|
|
|
*/
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
/******* fix start *******/
|
|
|
|
int w; // Width
|
|
|
|
int h; // Height
|
|
|
|
int c; // Channel
|
|
|
|
int n; // Number, to record filter's out_channels. input and output must be 1
|
|
|
|
int stride;
|
|
|
|
fptp_t *item;
|
|
|
|
/******* fix end *******/
|
|
|
|
} dl_matrix3d_t;
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
int w; // Width
|
|
|
|
int h; // Height
|
|
|
|
int c; // Channel
|
|
|
|
int n; // Number, to record filter's out_channels. input and output must be 1
|
|
|
|
int stride;
|
|
|
|
uc_t *item;
|
|
|
|
} dl_matrix3du_t;
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
int stride_x;
|
|
|
|
int stride_y;
|
|
|
|
dl_padding_type padding;
|
|
|
|
dl_conv_mode mode;
|
|
|
|
dl_op_type type;
|
|
|
|
} dl_matrix3d_conv_config_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @brief Allocate a 3D matrix with float items, the access sequence is NHWC
|
|
|
|
*
|
|
|
|
* @param n Number of matrix3d, for filters it is out channels, for others it is 1
|
|
|
|
* @param w Width of matrix3d
|
|
|
|
* @param h Height of matrix3d
|
|
|
|
* @param c Channel of matrix3d
|
|
|
|
* @return 3d matrix
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_alloc(int n, int w, int h, int c);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @brief Allocate a 3D matrix with 8-bits items, the access sequence is NHWC
|
|
|
|
*
|
|
|
|
* @param n Number of matrix3d, for filters it is out channels, for others it is 1
|
|
|
|
* @param w Width of matrix3d
|
|
|
|
* @param h Height of matrix3d
|
|
|
|
* @param c Channel of matrix3d
|
|
|
|
* @return 3d matrix
|
|
|
|
*/
|
|
|
|
dl_matrix3du_t *dl_matrix3du_alloc(int n, int w, int h, int c);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @brief Free a matrix3d
|
|
|
|
*
|
|
|
|
* @param m matrix3d with float items
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_free(dl_matrix3d_t *m);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @brief Free a matrix3d
|
|
|
|
*
|
|
|
|
* @param m matrix3d with 8-bits items
|
|
|
|
*/
|
|
|
|
void dl_matrix3du_free(dl_matrix3du_t *m);
|
|
|
|
|
2019-05-12 17:52:23 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* @brief Dot product with a vector and matrix
|
|
|
|
*
|
|
|
|
* @param out Space to put the result
|
|
|
|
* @param in input vector
|
|
|
|
* @param f filter matrix
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_dot_product(dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
|
|
|
|
|
2019-01-09 19:31:46 +01:00
|
|
|
/**
|
|
|
|
* @brief Do a relu (Rectifier Linear Unit) operation, update the input matrix3d
|
|
|
|
*
|
|
|
|
* @param in Floating point input matrix3d
|
|
|
|
* @param clip If value is higher than this, it will be clipped to this value
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_relu(dl_matrix3d_t *m, fptp_t clip);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a leaky relu (Rectifier Linear Unit) operation, update the input matrix3d
|
|
|
|
*
|
|
|
|
* @param in Floating point input matrix3d
|
|
|
|
* @param clip If value is higher than this, it will be clipped to this value
|
|
|
|
* @param alpha If value is less than zero, it will be updated by multiplying this factor
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t clip, fptp_t alpha);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a softmax operation on a matrix3d
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_softmax(dl_matrix3d_t *m);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a general fully connected layer pass, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d, size is (1, w, 1, 1)
|
|
|
|
* @param filter Weights of the neurons, size is (1, w, h, 1)
|
|
|
|
* @param bias Bias for the fc layer, size is (1, 1, 1, h)
|
|
|
|
* @return The result of fc layer, size is (1, 1, 1, h)
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_fc(dl_matrix3d_t *in,
|
|
|
|
dl_matrix3d_t *filter,
|
|
|
|
dl_matrix3d_t *bias);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Copy a range of float items from an existing matrix to a preallocated matrix
|
|
|
|
*
|
|
|
|
* @param dst The destination slice matrix
|
|
|
|
* @param src The source matrix to slice
|
|
|
|
* @param x X-offset of the origin of the returned matrix within the sliced matrix
|
|
|
|
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
|
|
|
|
* @param w Width of the resulting matrix
|
|
|
|
* @param h Height of the resulting matrix
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_slice_copy(dl_matrix3d_t *dst,
|
|
|
|
dl_matrix3d_t *src,
|
|
|
|
int x,
|
|
|
|
int y,
|
|
|
|
int w,
|
|
|
|
int h);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Copy a range of 8-bits items from an existing matrix to a preallocated matrix
|
|
|
|
*
|
|
|
|
* @param dst The destination slice matrix
|
|
|
|
* @param src The source matrix to slice
|
|
|
|
* @param x X-offset of the origin of the returned matrix within the sliced matrix
|
|
|
|
* @param y Y-offset of the origin of the returned matrix within the sliced matrix
|
|
|
|
* @param w Width of the resulting matrix
|
|
|
|
* @param h Height of the resulting matrix
|
|
|
|
*/
|
|
|
|
void dl_matrix3du_slice_copy(dl_matrix3du_t *dst,
|
|
|
|
dl_matrix3du_t *src,
|
|
|
|
int x,
|
|
|
|
int y,
|
|
|
|
int w,
|
|
|
|
int h);
|
|
|
|
|
2019-05-12 17:52:23 +02:00
|
|
|
|
|
|
|
void dl_matrix3d_conv_1x1 (dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
|
|
|
|
|
2019-01-09 19:31:46 +01:00
|
|
|
/**
|
|
|
|
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
* @param filter Weights of the neurons
|
|
|
|
* @param bias Bias for the CNN layer
|
|
|
|
* @param stride_x The step length of the convolution window in x(width) direction
|
|
|
|
* @param stride_y The step length of the convolution window in y(height) direction
|
|
|
|
* @param padding One of VALID or SAME
|
|
|
|
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
|
|
|
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
|
|
|
* @return The result of CNN layer
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_conv(dl_matrix3d_t *in,
|
|
|
|
dl_matrix3d_t *filter,
|
|
|
|
dl_matrix3d_t *bias,
|
|
|
|
int stride_x,
|
|
|
|
int stride_y,
|
|
|
|
int padding,
|
|
|
|
int mode);
|
|
|
|
|
2019-05-12 17:52:23 +02:00
|
|
|
void dl_matrix3d_conv_3x3_normal (dl_matrix3d_t *out,
|
|
|
|
dl_matrix3d_t *in,
|
|
|
|
dl_matrix3d_t *f,
|
|
|
|
int step_x,
|
|
|
|
int step_y);
|
2019-01-09 19:31:46 +01:00
|
|
|
/**
|
|
|
|
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
* @param filter Weights of the neurons
|
|
|
|
* @param bias Bias for the CNN layer
|
|
|
|
* @param stride_x The step length of the convolution window in x(width) direction
|
|
|
|
* @param stride_y The step length of the convolution window in y(height) direction
|
|
|
|
* @param padding One of VALID or SAME
|
|
|
|
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
|
|
|
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
|
|
|
* @return The result of CNN layer
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3du_conv(dl_matrix3du_t *in,
|
|
|
|
dl_matrix3d_t *filter,
|
|
|
|
dl_matrix3d_t *bias,
|
|
|
|
int stride_x,
|
|
|
|
int stride_y,
|
|
|
|
int padding,
|
|
|
|
int mode);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a depthwise CNN layer pass, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
* @param filter Weights of the neurons
|
|
|
|
* @param stride_x The step length of the convolution window in x(width) direction
|
|
|
|
* @param stride_y The step length of the convolution window in y(height) direction
|
|
|
|
* @param padding One of VALID or SAME
|
|
|
|
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
|
|
|
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
|
|
|
* @return The result of depthwise CNN layer
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_depthwise_conv(dl_matrix3d_t *in,
|
|
|
|
dl_matrix3d_t *filter,
|
|
|
|
int stride_x,
|
|
|
|
int stride_y,
|
|
|
|
int padding,
|
|
|
|
int mode);
|
|
|
|
|
2019-05-12 17:52:23 +02:00
|
|
|
void dl_matrix3d_depthwise_conv_3x3_normal(dl_matrix3d_t *out,
|
|
|
|
dl_matrix3d_t *in,
|
|
|
|
dl_matrix3d_t *f,
|
|
|
|
int step_x,
|
|
|
|
int step_y);
|
2019-01-09 19:31:46 +01:00
|
|
|
/**
|
|
|
|
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
* @param filter Weights of the neurons
|
|
|
|
* @param stride_x The step length of the convolution window in x(width) direction
|
|
|
|
* @param stride_y The step length of the convolution window in y(height) direction
|
|
|
|
* @param padding One of VALID or SAME
|
|
|
|
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
|
|
|
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
|
|
|
* @return The result of depthwise CNN layer
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_mobilenet(void *in,
|
|
|
|
dl_matrix3d_t *dilate,
|
|
|
|
dl_matrix3d_t *depthwise,
|
|
|
|
dl_matrix3d_t *compress,
|
|
|
|
dl_matrix3d_t *bias,
|
|
|
|
dl_matrix3d_t *prelu,
|
|
|
|
dl_matrix3d_conv_config_t *config);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a global average pooling layer pass, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
*
|
|
|
|
* @return The result of global average pooling layer
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_global_pool(dl_matrix3d_t *in);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a batch normalization operation, update the input matrix3d: input = input * scale + offset
|
|
|
|
*
|
|
|
|
* @param m Input matrix3d
|
|
|
|
* @param scale scale matrix3d, scale = gamma/((moving_variance+sigma)^(1/2))
|
|
|
|
* @param Offset Offset matrix3d, offset = beta-(moving_mean*gamma/((moving_variance+sigma)^(1/2)))
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_batch_normalize(dl_matrix3d_t *m,
|
|
|
|
dl_matrix3d_t *scale,
|
|
|
|
dl_matrix3d_t *offset);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Add a pair of matrix3d item-by-item: res=in_1+in_2
|
|
|
|
*
|
|
|
|
* @param in_1 First Floating point input matrix3d
|
|
|
|
* @param in_2 Second Floating point input matrix3d
|
|
|
|
*
|
|
|
|
* @return Added data
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_add(dl_matrix3d_t *in_1, dl_matrix3d_t *in_2);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a standard relu operation, update the input matrix3d
|
|
|
|
*
|
|
|
|
* @param m Floating point input matrix3d
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_relu_std(dl_matrix3d_t *m);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Concatenate the channels of two matrix3ds into a new matrix3d
|
|
|
|
*
|
|
|
|
* @param in_1 First Floating point input matrix3d
|
|
|
|
* @param in_2 Second Floating point input matrix3d
|
|
|
|
*
|
|
|
|
* @return A newly allocated matrix3d with as avlues in_1|in_2
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_concat(dl_matrix3d_t *in_1, dl_matrix3d_t *in_2);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Concatenate the channels of four matrix3ds into a new matrix3d
|
|
|
|
*
|
|
|
|
* @param in_1 First Floating point input matrix3d
|
|
|
|
* @param in_2 Second Floating point input matrix3d
|
|
|
|
* @param in_3 Third Floating point input matrix3d
|
|
|
|
* @param in_4 Fourth Floating point input matrix3d
|
|
|
|
*
|
|
|
|
* @return A newly allocated matrix3d with as avlues in_1|in_2|in_3|in_4
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_concat_4(dl_matrix3d_t *in_1,
|
|
|
|
dl_matrix3d_t *in_2,
|
|
|
|
dl_matrix3d_t *in_3,
|
|
|
|
dl_matrix3d_t *in_4);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Concatenate the channels of eight matrix3ds into a new matrix3d
|
|
|
|
*
|
|
|
|
* @param in_1 First Floating point input matrix3d
|
|
|
|
* @param in_2 Second Floating point input matrix3d
|
|
|
|
* @param in_3 Third Floating point input matrix3d
|
|
|
|
* @param in_4 Fourth Floating point input matrix3d
|
|
|
|
* @param in_5 Fifth Floating point input matrix3d
|
|
|
|
* @param in_6 Sixth Floating point input matrix3d
|
|
|
|
* @param in_7 Seventh Floating point input matrix3d
|
|
|
|
* @param in_8 eighth Floating point input matrix3d
|
|
|
|
*
|
|
|
|
* @return A newly allocated matrix3d with as avlues in_1|in_2|in_3|in_4|in_5|in_6|in_7|in_8
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_concat_8(dl_matrix3d_t *in_1,
|
|
|
|
dl_matrix3d_t *in_2,
|
|
|
|
dl_matrix3d_t *in_3,
|
|
|
|
dl_matrix3d_t *in_4,
|
|
|
|
dl_matrix3d_t *in_5,
|
|
|
|
dl_matrix3d_t *in_6,
|
|
|
|
dl_matrix3d_t *in_7,
|
|
|
|
dl_matrix3d_t *in_8);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a mobilefacenet block forward, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
* @param pw Weights of the pointwise conv layer
|
|
|
|
* @param pw_bn_scale The scale params of the batch_normalize layer after the pointwise conv layer
|
|
|
|
* @param pw_bn_offset The offset params of the batch_normalize layer after the pointwise conv layer
|
|
|
|
* @param dw Weights of the depthwise conv layer
|
|
|
|
* @param dw_bn_scale The scale params of the batch_normalize layer after the depthwise conv layer
|
|
|
|
* @param dw_bn_offset The offset params of the batch_normalize layer after the depthwise conv layer
|
|
|
|
* @param pw_linear Weights of the pointwise linear conv layer
|
|
|
|
* @param pw_linear_bn_scale The scale params of the batch_normalize layer after the pointwise linear conv layer
|
|
|
|
* @param pw_linear_bn_offset The offset params of the batch_normalize layer after the pointwise linear conv layer
|
|
|
|
* @param stride_x The step length of the convolution window in x(width) direction
|
|
|
|
* @param stride_y The step length of the convolution window in y(height) direction
|
|
|
|
* @param padding One of VALID or SAME
|
|
|
|
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
|
|
|
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
|
|
|
* @return The result of a mobilefacenet block
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_mobilefaceblock(void *in,
|
|
|
|
dl_matrix3d_t *pw,
|
|
|
|
dl_matrix3d_t *pw_bn_scale,
|
|
|
|
dl_matrix3d_t *pw_bn_offset,
|
|
|
|
dl_matrix3d_t *dw,
|
|
|
|
dl_matrix3d_t *dw_bn_scale,
|
|
|
|
dl_matrix3d_t *dw_bn_offset,
|
|
|
|
dl_matrix3d_t *pw_linear,
|
|
|
|
dl_matrix3d_t *pw_linear_bn_scale,
|
|
|
|
dl_matrix3d_t *pw_linear_bn_offset,
|
|
|
|
int stride_x,
|
|
|
|
int stride_y,
|
|
|
|
int padding,
|
|
|
|
int mode,
|
|
|
|
int shortcut);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Do a mobilefacenet block forward with 1x1 split conv, dimension is (number, width, height, channel)
|
|
|
|
*
|
|
|
|
* @param in Input matrix3d
|
|
|
|
* @param pw_1 Weights of the pointwise conv layer 1
|
|
|
|
* @param pw_2 Weights of the pointwise conv layer 2
|
|
|
|
* @param pw_bn_scale The scale params of the batch_normalize layer after the pointwise conv layer
|
|
|
|
* @param pw_bn_offset The offset params of the batch_normalize layer after the pointwise conv layer
|
|
|
|
* @param dw Weights of the depthwise conv layer
|
|
|
|
* @param dw_bn_scale The scale params of the batch_normalize layer after the depthwise conv layer
|
|
|
|
* @param dw_bn_offset The offset params of the batch_normalize layer after the depthwise conv layer
|
|
|
|
* @param pw_linear_1 Weights of the pointwise linear conv layer 1
|
|
|
|
* @param pw_linear_2 Weights of the pointwise linear conv layer 2
|
|
|
|
* @param pw_linear_bn_scale The scale params of the batch_normalize layer after the pointwise linear conv layer
|
|
|
|
* @param pw_linear_bn_offset The offset params of the batch_normalize layer after the pointwise linear conv layer
|
|
|
|
* @param stride_x The step length of the convolution window in x(width) direction
|
|
|
|
* @param stride_y The step length of the convolution window in y(height) direction
|
|
|
|
* @param padding One of VALID or SAME
|
|
|
|
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
|
|
|
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
|
|
|
* @return The result of a mobilefacenet block
|
|
|
|
*/
|
|
|
|
dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(void *in,
|
|
|
|
dl_matrix3d_t *pw_1,
|
|
|
|
dl_matrix3d_t *pw_2,
|
|
|
|
dl_matrix3d_t *pw_bn_scale,
|
|
|
|
dl_matrix3d_t *pw_bn_offset,
|
|
|
|
dl_matrix3d_t *dw,
|
|
|
|
dl_matrix3d_t *dw_bn_scale,
|
|
|
|
dl_matrix3d_t *dw_bn_offset,
|
|
|
|
dl_matrix3d_t *pw_linear_1,
|
|
|
|
dl_matrix3d_t *pw_linear_2,
|
|
|
|
dl_matrix3d_t *pw_linear_bn_scale,
|
|
|
|
dl_matrix3d_t *pw_linear_bn_offset,
|
|
|
|
int stride_x,
|
|
|
|
int stride_y,
|
|
|
|
int padding,
|
|
|
|
int mode,
|
|
|
|
int shortcut);
|
|
|
|
/**
|
|
|
|
* @brief Print the matrix3d items
|
|
|
|
*
|
|
|
|
* @param m dl_matrix3d_t to be printed
|
|
|
|
* @param message name of matrix
|
|
|
|
*/
|
|
|
|
void dl_matrix3d_print(dl_matrix3d_t *m, char *message);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Print the matrix3du items
|
|
|
|
*
|
|
|
|
* @param m dl_matrix3du_t to be printed
|
|
|
|
* @param message name of matrix
|
|
|
|
*/
|
|
|
|
void dl_matrix3du_print(dl_matrix3du_t *m, char *message);
|
2019-05-12 17:52:23 +02:00
|
|
|
|
|
|
|
|
|
|
|
void dl_matrix3d_init_bias (dl_matrix3d_t *out, dl_matrix3d_t *bias);
|
|
|
|
|
|
|
|
void dl_matrix3d_multiply(dl_matrix3d_t *out, dl_matrix3d_t *in1, dl_matrix3d_t *in2);
|