LEDC Driver Update
- Add double precision to LEDC frequency - Add method for writing frequencies (Tones) - Add method for writing notes (8 channels polyphony anyone?)
This commit is contained in:
parent
8e948096d4
commit
a4305284d0
@ -50,36 +50,39 @@ xSemaphoreHandle _ledc_sys_lock;
|
||||
** ledc: 14 => Group: 1, Channel: 6, Timer: 3
|
||||
** ledc: 15 => Group: 1, Channel: 7, Timer: 3
|
||||
*/
|
||||
#define LEDC_CHAN(g,c) LEDC.channel_group[(g)].channel[(c)]
|
||||
#define LEDC_TIMER(g,t) LEDC.timer_group[(g)].timer[(t)]
|
||||
|
||||
//uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num));
|
||||
void ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk)
|
||||
static void _ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk)
|
||||
{
|
||||
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
|
||||
uint8_t group=(chan/8), timer=((chan/2)%4);
|
||||
static bool tHasStarted = false;
|
||||
if(!tHasStarted) {
|
||||
tHasStarted = true;
|
||||
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
|
||||
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
|
||||
ledc_dev->conf.apb_clk_sel = 1;//LS use apb clock
|
||||
LEDC.conf.apb_clk_sel = 1;//LS use apb clock
|
||||
#if !CONFIG_DISABLE_HAL_LOCKS
|
||||
_ledc_sys_lock = xSemaphoreCreateMutex();
|
||||
#endif
|
||||
}
|
||||
LEDC_MUTEX_LOCK();
|
||||
ledc_dev->timer_group[group].timer[timer].conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
|
||||
ledc_dev->timer_group[group].timer[timer].conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
|
||||
ledc_dev->timer_group[group].timer[timer].conf.tick_sel = apb_clk;//apb clock
|
||||
LEDC_TIMER(group, timer).conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
|
||||
LEDC_TIMER(group, timer).conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
|
||||
LEDC_TIMER(group, timer).conf.tick_sel = apb_clk;//apb clock
|
||||
if(group) {
|
||||
ledc_dev->timer_group[group].timer[timer].conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers
|
||||
LEDC_TIMER(group, timer).conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers
|
||||
}
|
||||
ledc_dev->timer_group[group].timer[timer].conf.pause = 0;
|
||||
ledc_dev->timer_group[group].timer[timer].conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset.
|
||||
ledc_dev->timer_group[group].timer[timer].conf.rst = 0;
|
||||
LEDC_TIMER(group, timer).conf.pause = 0;
|
||||
LEDC_TIMER(group, timer).conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset.
|
||||
LEDC_TIMER(group, timer).conf.rst = 0;
|
||||
LEDC_MUTEX_UNLOCK();
|
||||
}
|
||||
|
||||
uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num)
|
||||
//max div_num 0x3FFFF (262143)
|
||||
//max bit_num 0x1F (31)
|
||||
static double _ledcSetupTimerFreq(uint8_t chan, double freq, uint8_t bit_num)
|
||||
{
|
||||
uint64_t clk_freq = APB_CLK_FREQ;
|
||||
clk_freq <<= 8;//div_num is 8 bit decimal
|
||||
@ -95,40 +98,60 @@ uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num)
|
||||
} else if(div_num < 256) {
|
||||
div_num = 256;//highest clock possible
|
||||
}
|
||||
ledcSetupTimer(chan, div_num, bit_num, apb_clk);
|
||||
return (clk_freq >> bit_num) / div_num;
|
||||
_ledcSetupTimer(chan, div_num, bit_num, apb_clk);
|
||||
//log_i("Fin: %f, Fclk: %uMhz, bits: %u, DIV: %u, Fout: %f",
|
||||
// freq, apb_clk?80:1, bit_num, div_num, (clk_freq >> bit_num) / (double)div_num);
|
||||
return (clk_freq >> bit_num) / (double)div_num;
|
||||
}
|
||||
|
||||
void ledcSetupChannel(uint8_t chan, uint8_t idle_level)
|
||||
static double _ledcTimerRead(uint8_t chan)
|
||||
{
|
||||
uint32_t div_num;
|
||||
uint8_t bit_num;
|
||||
bool apb_clk;
|
||||
uint8_t group=(chan/8), timer=((chan/2)%4);
|
||||
LEDC_MUTEX_LOCK();
|
||||
div_num = LEDC_TIMER(group, timer).conf.div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
|
||||
bit_num = LEDC_TIMER(group, timer).conf.bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
|
||||
apb_clk = LEDC_TIMER(group, timer).conf.tick_sel;//apb clock
|
||||
LEDC_MUTEX_UNLOCK();
|
||||
uint64_t clk_freq = 1000000;
|
||||
if(apb_clk) {
|
||||
clk_freq *= 80;
|
||||
}
|
||||
clk_freq <<= 8;//div_num is 8 bit decimal
|
||||
return (clk_freq >> bit_num) / (double)div_num;
|
||||
}
|
||||
|
||||
static void _ledcSetupChannel(uint8_t chan, uint8_t idle_level)
|
||||
{
|
||||
uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4);
|
||||
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
|
||||
LEDC_MUTEX_LOCK();
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off.
|
||||
ledc_dev->channel_group[group].channel[channel].hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel.
|
||||
ledc_dev->channel_group[group].channel[channel].duty.duty = 0;
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
||||
LEDC_CHAN(group, channel).conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3
|
||||
LEDC_CHAN(group, channel).conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off.
|
||||
LEDC_CHAN(group, channel).hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint
|
||||
LEDC_CHAN(group, channel).conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel
|
||||
LEDC_CHAN(group, channel).conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel
|
||||
LEDC_CHAN(group, channel).conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel
|
||||
LEDC_CHAN(group, channel).conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel.
|
||||
LEDC_CHAN(group, channel).duty.duty = 0;
|
||||
LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
|
||||
LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
||||
if(group) {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4);
|
||||
LEDC_CHAN(group, channel).conf0.val &= ~BIT(4);
|
||||
} else {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0;
|
||||
LEDC_CHAN(group, channel).conf0.clk_en = 0;
|
||||
}
|
||||
LEDC_MUTEX_UNLOCK();
|
||||
}
|
||||
|
||||
uint32_t ledcSetup(uint8_t chan, uint32_t freq, uint8_t bit_num)
|
||||
double ledcSetup(uint8_t chan, double freq, uint8_t bit_num)
|
||||
{
|
||||
if(chan > 15) {
|
||||
return 0;
|
||||
}
|
||||
uint32_t res_freq = ledcSetupTimerFreq(chan, freq, bit_num);
|
||||
ledcSetupChannel(chan, LOW);
|
||||
double res_freq = _ledcSetupTimerFreq(chan, freq, bit_num);
|
||||
_ledcSetupChannel(chan, LOW);
|
||||
return res_freq;
|
||||
}
|
||||
|
||||
@ -138,24 +161,23 @@ void ledcWrite(uint8_t chan, uint32_t duty)
|
||||
return;
|
||||
}
|
||||
uint8_t group=(chan/8), channel=(chan%8);
|
||||
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
|
||||
LEDC_MUTEX_LOCK();
|
||||
ledc_dev->channel_group[group].channel[channel].duty.duty = duty << 4;//25 bit (21.4)
|
||||
LEDC_CHAN(group, channel).duty.duty = duty << 4;//25 bit (21.4)
|
||||
if(duty) {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 1;//This is the output enable control bit for channel
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
||||
LEDC_CHAN(group, channel).conf0.sig_out_en = 1;//This is the output enable control bit for channel
|
||||
LEDC_CHAN(group, channel).conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
||||
if(group) {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.val |= BIT(4);
|
||||
LEDC_CHAN(group, channel).conf0.val |= BIT(4);
|
||||
} else {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 1;
|
||||
LEDC_CHAN(group, channel).conf0.clk_en = 1;
|
||||
}
|
||||
} else {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel
|
||||
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
||||
LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
|
||||
LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
|
||||
if(group) {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4);
|
||||
LEDC_CHAN(group, channel).conf0.val &= ~BIT(4);
|
||||
} else {
|
||||
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0;
|
||||
LEDC_CHAN(group, channel).conf0.clk_en = 0;
|
||||
}
|
||||
}
|
||||
LEDC_MUTEX_UNLOCK();
|
||||
@ -166,8 +188,42 @@ uint32_t ledcRead(uint8_t chan)
|
||||
if(chan > 15) {
|
||||
return 0;
|
||||
}
|
||||
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
|
||||
return ledc_dev->channel_group[chan/8].channel[chan%8].duty.duty >> 4;
|
||||
return LEDC.channel_group[chan/8].channel[chan%8].duty.duty >> 4;
|
||||
}
|
||||
|
||||
double ledcReadFreq(uint8_t chan)
|
||||
{
|
||||
if(!ledcRead(chan)){
|
||||
return 0;
|
||||
}
|
||||
return _ledcTimerRead(chan);
|
||||
}
|
||||
|
||||
double ledcWriteTone(uint8_t chan, double freq)
|
||||
{
|
||||
if(chan > 15) {
|
||||
return 0;
|
||||
}
|
||||
if(!freq) {
|
||||
ledcWrite(chan, 0);
|
||||
return 0;
|
||||
}
|
||||
double res_freq = _ledcSetupTimerFreq(chan, freq, 10);
|
||||
ledcWrite(chan, 0x1FF);
|
||||
return res_freq;
|
||||
}
|
||||
|
||||
double ledcWriteNote(uint8_t chan, note_t note, uint8_t octave){
|
||||
const uint16_t noteFrequencyBase[12] = {
|
||||
// C C# D Eb E F F# G G# A Bb B
|
||||
4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902
|
||||
};
|
||||
|
||||
if(octave > 8 || note >= NOTE_MAX){
|
||||
return 0;
|
||||
}
|
||||
double noteFreq = (double)noteFrequencyBase[note] / (double)(1 << (8-octave));
|
||||
return ledcWriteTone(chan, noteFreq);
|
||||
}
|
||||
|
||||
void ledcAttachPin(uint8_t pin, uint8_t chan)
|
||||
|
@ -22,13 +22,21 @@ extern "C" {
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
typedef enum {
|
||||
NOTE_C, NOTE_Cs, NOTE_D, NOTE_Eb, NOTE_E, NOTE_F, NOTE_Fs, NOTE_G, NOTE_Gs, NOTE_A, NOTE_Bb, NOTE_B, NOTE_MAX
|
||||
} note_t;
|
||||
|
||||
//channel 0-15 resolution 1-16bits freq limits depend on resolution
|
||||
uint32_t ledcSetup(uint8_t channel, uint32_t freq, uint8_t resolution_bits);
|
||||
double ledcSetup(uint8_t channel, double freq, uint8_t resolution_bits);
|
||||
void ledcWrite(uint8_t channel, uint32_t duty);
|
||||
double ledcWriteTone(uint8_t channel, double freq);
|
||||
double ledcWriteNote(uint8_t channel, note_t note, uint8_t octave);
|
||||
uint32_t ledcRead(uint8_t channel);
|
||||
double ledcReadFreq(uint8_t channel);
|
||||
void ledcAttachPin(uint8_t pin, uint8_t channel);
|
||||
void ledcDetachPin(uint8_t pin);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user