LEDC Driver Update

- Add double precision to LEDC frequency
- Add method for writing frequencies (Tones)
- Add method for writing notes (8 channels polyphony anyone?)
This commit is contained in:
me-no-dev 2017-01-09 18:05:30 +02:00
parent 8e948096d4
commit a4305284d0
2 changed files with 107 additions and 43 deletions

View File

@ -50,36 +50,39 @@ xSemaphoreHandle _ledc_sys_lock;
** ledc: 14 => Group: 1, Channel: 6, Timer: 3 ** ledc: 14 => Group: 1, Channel: 6, Timer: 3
** ledc: 15 => Group: 1, Channel: 7, Timer: 3 ** ledc: 15 => Group: 1, Channel: 7, Timer: 3
*/ */
#define LEDC_CHAN(g,c) LEDC.channel_group[(g)].channel[(c)]
#define LEDC_TIMER(g,t) LEDC.timer_group[(g)].timer[(t)]
//uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num)); //uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num));
void ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk) static void _ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk)
{ {
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
uint8_t group=(chan/8), timer=((chan/2)%4); uint8_t group=(chan/8), timer=((chan/2)%4);
static bool tHasStarted = false; static bool tHasStarted = false;
if(!tHasStarted) { if(!tHasStarted) {
tHasStarted = true; tHasStarted = true;
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN); SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST); CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
ledc_dev->conf.apb_clk_sel = 1;//LS use apb clock LEDC.conf.apb_clk_sel = 1;//LS use apb clock
#if !CONFIG_DISABLE_HAL_LOCKS #if !CONFIG_DISABLE_HAL_LOCKS
_ledc_sys_lock = xSemaphoreCreateMutex(); _ledc_sys_lock = xSemaphoreCreateMutex();
#endif #endif
} }
LEDC_MUTEX_LOCK(); LEDC_MUTEX_LOCK();
ledc_dev->timer_group[group].timer[timer].conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part. LEDC_TIMER(group, timer).conf.div_num = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
ledc_dev->timer_group[group].timer[timer].conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20. LEDC_TIMER(group, timer).conf.bit_num = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
ledc_dev->timer_group[group].timer[timer].conf.tick_sel = apb_clk;//apb clock LEDC_TIMER(group, timer).conf.tick_sel = apb_clk;//apb clock
if(group) { if(group) {
ledc_dev->timer_group[group].timer[timer].conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers LEDC_TIMER(group, timer).conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers
} }
ledc_dev->timer_group[group].timer[timer].conf.pause = 0; LEDC_TIMER(group, timer).conf.pause = 0;
ledc_dev->timer_group[group].timer[timer].conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset. LEDC_TIMER(group, timer).conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset.
ledc_dev->timer_group[group].timer[timer].conf.rst = 0; LEDC_TIMER(group, timer).conf.rst = 0;
LEDC_MUTEX_UNLOCK(); LEDC_MUTEX_UNLOCK();
} }
uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num) //max div_num 0x3FFFF (262143)
//max bit_num 0x1F (31)
static double _ledcSetupTimerFreq(uint8_t chan, double freq, uint8_t bit_num)
{ {
uint64_t clk_freq = APB_CLK_FREQ; uint64_t clk_freq = APB_CLK_FREQ;
clk_freq <<= 8;//div_num is 8 bit decimal clk_freq <<= 8;//div_num is 8 bit decimal
@ -95,40 +98,60 @@ uint32_t ledcSetupTimerFreq(uint8_t chan, uint32_t freq, uint8_t bit_num)
} else if(div_num < 256) { } else if(div_num < 256) {
div_num = 256;//highest clock possible div_num = 256;//highest clock possible
} }
ledcSetupTimer(chan, div_num, bit_num, apb_clk); _ledcSetupTimer(chan, div_num, bit_num, apb_clk);
return (clk_freq >> bit_num) / div_num; //log_i("Fin: %f, Fclk: %uMhz, bits: %u, DIV: %u, Fout: %f",
// freq, apb_clk?80:1, bit_num, div_num, (clk_freq >> bit_num) / (double)div_num);
return (clk_freq >> bit_num) / (double)div_num;
} }
void ledcSetupChannel(uint8_t chan, uint8_t idle_level) static double _ledcTimerRead(uint8_t chan)
{
uint32_t div_num;
uint8_t bit_num;
bool apb_clk;
uint8_t group=(chan/8), timer=((chan/2)%4);
LEDC_MUTEX_LOCK();
div_num = LEDC_TIMER(group, timer).conf.div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
bit_num = LEDC_TIMER(group, timer).conf.bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
apb_clk = LEDC_TIMER(group, timer).conf.tick_sel;//apb clock
LEDC_MUTEX_UNLOCK();
uint64_t clk_freq = 1000000;
if(apb_clk) {
clk_freq *= 80;
}
clk_freq <<= 8;//div_num is 8 bit decimal
return (clk_freq >> bit_num) / (double)div_num;
}
static void _ledcSetupChannel(uint8_t chan, uint8_t idle_level)
{ {
uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4); uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4);
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
LEDC_MUTEX_LOCK(); LEDC_MUTEX_LOCK();
ledc_dev->channel_group[group].channel[channel].conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3 LEDC_CHAN(group, channel).conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3
ledc_dev->channel_group[group].channel[channel].conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off. LEDC_CHAN(group, channel).conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off.
ledc_dev->channel_group[group].channel[channel].hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint LEDC_CHAN(group, channel).hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint
ledc_dev->channel_group[group].channel[channel].conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel LEDC_CHAN(group, channel).conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel LEDC_CHAN(group, channel).conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel LEDC_CHAN(group, channel).conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel. LEDC_CHAN(group, channel).conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel.
ledc_dev->channel_group[group].channel[channel].duty.duty = 0; LEDC_CHAN(group, channel).duty.duty = 0;
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
if(group) { if(group) {
ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4); LEDC_CHAN(group, channel).conf0.val &= ~BIT(4);
} else { } else {
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0; LEDC_CHAN(group, channel).conf0.clk_en = 0;
} }
LEDC_MUTEX_UNLOCK(); LEDC_MUTEX_UNLOCK();
} }
uint32_t ledcSetup(uint8_t chan, uint32_t freq, uint8_t bit_num) double ledcSetup(uint8_t chan, double freq, uint8_t bit_num)
{ {
if(chan > 15) { if(chan > 15) {
return 0; return 0;
} }
uint32_t res_freq = ledcSetupTimerFreq(chan, freq, bit_num); double res_freq = _ledcSetupTimerFreq(chan, freq, bit_num);
ledcSetupChannel(chan, LOW); _ledcSetupChannel(chan, LOW);
return res_freq; return res_freq;
} }
@ -138,24 +161,23 @@ void ledcWrite(uint8_t chan, uint32_t duty)
return; return;
} }
uint8_t group=(chan/8), channel=(chan%8); uint8_t group=(chan/8), channel=(chan%8);
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE);
LEDC_MUTEX_LOCK(); LEDC_MUTEX_LOCK();
ledc_dev->channel_group[group].channel[channel].duty.duty = duty << 4;//25 bit (21.4) LEDC_CHAN(group, channel).duty.duty = duty << 4;//25 bit (21.4)
if(duty) { if(duty) {
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 1;//This is the output enable control bit for channel LEDC_CHAN(group, channel).conf0.sig_out_en = 1;//This is the output enable control bit for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. LEDC_CHAN(group, channel).conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
if(group) { if(group) {
ledc_dev->channel_group[group].channel[channel].conf0.val |= BIT(4); LEDC_CHAN(group, channel).conf0.val |= BIT(4);
} else { } else {
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 1; LEDC_CHAN(group, channel).conf0.clk_en = 1;
} }
} else { } else {
ledc_dev->channel_group[group].channel[channel].conf0.sig_out_en = 0;//This is the output enable control bit for channel LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
ledc_dev->channel_group[group].channel[channel].conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware. LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
if(group) { if(group) {
ledc_dev->channel_group[group].channel[channel].conf0.val &= ~BIT(4); LEDC_CHAN(group, channel).conf0.val &= ~BIT(4);
} else { } else {
ledc_dev->channel_group[group].channel[channel].conf0.clk_en = 0; LEDC_CHAN(group, channel).conf0.clk_en = 0;
} }
} }
LEDC_MUTEX_UNLOCK(); LEDC_MUTEX_UNLOCK();
@ -166,8 +188,42 @@ uint32_t ledcRead(uint8_t chan)
if(chan > 15) { if(chan > 15) {
return 0; return 0;
} }
ledc_dev_t * ledc_dev = (volatile ledc_dev_t *)(DR_REG_LEDC_BASE); return LEDC.channel_group[chan/8].channel[chan%8].duty.duty >> 4;
return ledc_dev->channel_group[chan/8].channel[chan%8].duty.duty >> 4; }
double ledcReadFreq(uint8_t chan)
{
if(!ledcRead(chan)){
return 0;
}
return _ledcTimerRead(chan);
}
double ledcWriteTone(uint8_t chan, double freq)
{
if(chan > 15) {
return 0;
}
if(!freq) {
ledcWrite(chan, 0);
return 0;
}
double res_freq = _ledcSetupTimerFreq(chan, freq, 10);
ledcWrite(chan, 0x1FF);
return res_freq;
}
double ledcWriteNote(uint8_t chan, note_t note, uint8_t octave){
const uint16_t noteFrequencyBase[12] = {
// C C# D Eb E F F# G G# A Bb B
4186, 4435, 4699, 4978, 5274, 5588, 5920, 6272, 6645, 7040, 7459, 7902
};
if(octave > 8 || note >= NOTE_MAX){
return 0;
}
double noteFreq = (double)noteFrequencyBase[note] / (double)(1 << (8-octave));
return ledcWriteTone(chan, noteFreq);
} }
void ledcAttachPin(uint8_t pin, uint8_t chan) void ledcAttachPin(uint8_t pin, uint8_t chan)

View File

@ -22,13 +22,21 @@ extern "C" {
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
typedef enum {
NOTE_C, NOTE_Cs, NOTE_D, NOTE_Eb, NOTE_E, NOTE_F, NOTE_Fs, NOTE_G, NOTE_Gs, NOTE_A, NOTE_Bb, NOTE_B, NOTE_MAX
} note_t;
//channel 0-15 resolution 1-16bits freq limits depend on resolution //channel 0-15 resolution 1-16bits freq limits depend on resolution
uint32_t ledcSetup(uint8_t channel, uint32_t freq, uint8_t resolution_bits); double ledcSetup(uint8_t channel, double freq, uint8_t resolution_bits);
void ledcWrite(uint8_t channel, uint32_t duty); void ledcWrite(uint8_t channel, uint32_t duty);
double ledcWriteTone(uint8_t channel, double freq);
double ledcWriteNote(uint8_t channel, note_t note, uint8_t octave);
uint32_t ledcRead(uint8_t channel); uint32_t ledcRead(uint8_t channel);
double ledcReadFreq(uint8_t channel);
void ledcAttachPin(uint8_t pin, uint8_t channel); void ledcAttachPin(uint8_t pin, uint8_t channel);
void ledcDetachPin(uint8_t pin); void ledcDetachPin(uint8_t pin);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif