I spent quite a while today figuring out how to get an OTA update over HTTPS on a custom port working. A part of my problem was not putting a slash before the .bin filename, since it wasn't there in the example. This produced invalid HTTP requests. Adding the slash would make it clear that it needs to be there.
Given that the URL in line 53 contains the same words "server" and "file.bin", one might assume that in line 55, the slash after the port number would get added automatically, however I have found out that without a slash you get an invalid request. Adding the slash removes any doubt.
I was playing with the mDNS service and noticed the method MDNSResponder::addService could return a Boolean with the way it is implemented just like other functions in this library.
This would be handy to know at a higher level weather or not the service was added correctly to the mDNS server of the ESP32.
This is a fix for missing scan responses after a first successfull scan.
While running the BLE_scan.ino sketch with wantDuplicates=false, i got
only one result with correct advertising and scan response length (31,26):
pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks(), false);
pBLEScan->start(scanTime, false);
...
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 31 + 26, addr type: 1
All following calls to start() just returned the advertising data without
scan response data:
pBLEScan->start(scanTime, false);
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 31 + 0, addr type: 1
With "wantDuplicates=true" i got:
pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks(), true);
pBLEScan->start(scanTime, false);
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 31 + 26, addr type: 1
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 31 + 26, addr type: 1
[W][BLEScan.cpp:73] handleGAPEvent(): ESP_GAP_SEARCH_INQ_CMPL_EVT
Devices found: 1
Scan done!
pBLEScan->start(scanTime, false);
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 31 + 0, addr type: 1
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 0 + 26, addr type: 1
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 31 + 0, addr type: 1
[W][BLEScan.cpp:109] handleGAPEvent(): bytes length: 0 + 26, addr type: 1
Explicitly initializing m_scan_params.scan_duplicate of BLEScan solves
this issue (In my case the un-initialized value was
m_scan_params.scan_duplicate == 1073599044).
Co-authored-by: Me No Dev <me-no-dev@users.noreply.github.com>
* If WebServer.handleClient is run in a tight loop, it will starve other processes. So, if there is no connection, throw in a delay(1). Fixes#4348
* Made a variable to control the delay behavior
Fixes crash on ESP32 when I2C FiFo overflows and interrupt function is unable to handle crash and throws this error:
[E][esp32-hal-i2c.c:1013] i2c_isr_handler_default(): unknown int=4
Co-authored-by: 0xDEADBEEF <0xde4dbeef@gmail.com>
* Update Parsing.cpp
When uploading TLS cert files the end of file "-----END CERTIFICATE-----" (or any kind of file with the sequence "CRLF--") is taken as posible end boundary. Then it is compared to the start boundary string. As it is expected, comparison turns to be false, and the whole end boundary string is put to _currentUpload->buf through _uploadWriteByte(). Here you have the problem: if you read boundary.length() bytes from HTTP request and you have some of the actual end boundary bytes in it, when you put all those bytes into _currentUpload->buf you are making a mistake. You will miss the actual end boundary string because some of those bytes were put in _currentUpload->buf.
* Update Parsing.cpp
The latest versions of Arduino IDE shifted the responsibility for precompiled libraries support to the core developers, which breaks precompiled library support in esp32 Arduino core. See https://github.com/arduino/ArduinoCore-avr/pull/52 for more details:
```
In this new version of the builder we are not doing any heuristics to find the right spot where the ldflags should be inserted (this was causing many bugs on its own); instead, we fully trust the core makers to add explicit support to precompiled libs.
```
This chage re-enables precompiled library support in the esp32 Arduino core.
SPIFFS causes crashes if you attempt to rmdir. Since there are no true directories in spiffs, this ought to be a noop. It looks like @me-no-dev worked around this by using unlink instead of rmdir, which works in fatfs and doesn't panic spiffs. This behavior is not universal. In order to get littlefs working, it would be good to get this back to conformity. Rather than digging deep into the upstream spiffs, I just check the mountpoint and noop if it is "/spiffs". So, if the user has changed the mountpoint, this will not work, but I think it's a pretty good tradeoff.
Successful exploitation could lead to arbitrary code execution.
The bug can be reproduced by running the following in a browser:
```
const formData = new FormData();
for (let i = 0;i < 33;++i) { formData.append("foo", i.toString()); }
await fetch("http://esp.local", { method: 'POST', body: formData });
```
Informed by the discussion in the bug and the code in 'that other branch'
the fix was clear. Just set a flag if we start handling a write, and
use that flag to guard the long write complete call.
Background
The current implementation of Update() uses the spi_flash_* api to write and read from flash. These functions ignore the partition->encrypted flag and always write raw data to flash even if the partition is marked as encrypted.
Changes in this PR
Update() now uses the esp_partition_* api.
Wrapper functions for esp_partition_* added to ESP.cpp. This was done to maintain a consistent approach to the way the spi_flash_* functions were used. I note though that not all of the esp-idf functions are used are wrapped, for example esp_ota_get_next_update_partition() so it may be that these should not be added?
The current implementation of Update() changes the first (magic) byte of firmware to 0xFF on write, and then when the firmware is completely written changes it back to ESP_IMAGE_HEADER_MAGIC. This works without erasing the sector because flash bits can be changed from 1->0 (but not 0->1). If the flash is encrypted then the actual data written to flash will not be all ones, so this approach will not work. In addition, encrypted flash must be written in 16 byte blocks. So, instead of changing the first byte the changed code stashes the first 16 bytes, and starts writing at the 17th byte, leaving the first 16 bytes as 0xFF. Then, in _enablePartition() the stashed bytes can be successfully written.
Benefits
Whilst it's not possible to use encrypted flash directly from either the Arduino IDE or PIO it's reasonably straightforward to compile and flash a bootloader with the necessary support from a simple esp-idf project and then use ArduinoOTA for subsequent updates. This PR enables the use of this workflow until such time as encrypted flash is supported, and is a first (small) step toward adding support.
Regardless of the above, the esp_partition_* api is recommended over the api_flash_* api.
Application code should mostly use these esp_partition_* API functions instead of lower level spi_flash_* API functions. Partition table API functions do bounds checking and calculate correct offsets in flash, based on data stored in a partition table.