arduino-esp32/cores/esp32/esp32-hal-i2c.c
me-no-dev 8b96b1a5f4 update IDF libs and esptool.py
adds autoreset after firmware upload
2017-01-05 13:54:40 +02:00

450 lines
13 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp32-hal-i2c.h"
#include "esp32-hal.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "rom/ets_sys.h"
#include "soc/i2c_reg.h"
#include "soc/i2c_struct.h"
#include "soc/dport_reg.h"
//#define I2C_DEV(i) (volatile i2c_dev_t *)((i)?DR_REG_I2C1_EXT_BASE:DR_REG_I2C_EXT_BASE)
//#define I2C_DEV(i) ((i2c_dev_t *)(REG_I2C_BASE(i)))
#define I2C_SCL_IDX(p) ((p==0)?I2CEXT0_SCL_OUT_IDX:((p==1)?I2CEXT1_SCL_OUT_IDX:0))
#define I2C_SDA_IDX(p) ((p==0)?I2CEXT0_SDA_OUT_IDX:((p==1)?I2CEXT1_SDA_OUT_IDX:0))
struct i2c_struct_t {
i2c_dev_t * dev;
#if !CONFIG_DISABLE_HAL_LOCKS
xSemaphoreHandle lock;
#endif
uint8_t num;
};
enum {
I2C_CMD_RSTART,
I2C_CMD_WRITE,
I2C_CMD_READ,
I2C_CMD_STOP,
I2C_CMD_END
};
#if CONFIG_DISABLE_HAL_LOCKS
#define I2C_MUTEX_LOCK()
#define I2C_MUTEX_UNLOCK()
static i2c_t _i2c_bus_array[2] = {
{(volatile i2c_dev_t *)(DR_REG_I2C_EXT_BASE), 0},
{(volatile i2c_dev_t *)(DR_REG_I2C1_EXT_BASE), 1}
};
#else
#define I2C_MUTEX_LOCK() do {} while (xSemaphoreTake(i2c->lock, portMAX_DELAY) != pdPASS)
#define I2C_MUTEX_UNLOCK() xSemaphoreGive(i2c->lock)
static i2c_t _i2c_bus_array[2] = {
{(volatile i2c_dev_t *)(DR_REG_I2C_EXT_BASE), NULL, 0},
{(volatile i2c_dev_t *)(DR_REG_I2C1_EXT_BASE), NULL, 1}
};
#endif
i2c_err_t i2cAttachSCL(i2c_t * i2c, int8_t scl)
{
if(i2c == NULL){
return I2C_ERROR_DEV;
}
pinMode(scl, OUTPUT_OPEN_DRAIN | PULLUP);
pinMatrixOutAttach(scl, I2C_SCL_IDX(i2c->num), false, false);
pinMatrixInAttach(scl, I2C_SCL_IDX(i2c->num), false);
return I2C_ERROR_OK;
}
i2c_err_t i2cDetachSCL(i2c_t * i2c, int8_t scl)
{
if(i2c == NULL){
return I2C_ERROR_DEV;
}
pinMatrixOutDetach(scl, false, false);
pinMatrixInDetach(I2C_SCL_IDX(i2c->num), false, false);
pinMode(scl, INPUT);
return I2C_ERROR_OK;
}
i2c_err_t i2cAttachSDA(i2c_t * i2c, int8_t sda)
{
if(i2c == NULL){
return I2C_ERROR_DEV;
}
pinMode(sda, OUTPUT_OPEN_DRAIN | PULLUP);
pinMatrixOutAttach(sda, I2C_SDA_IDX(i2c->num), false, false);
pinMatrixInAttach(sda, I2C_SDA_IDX(i2c->num), false);
return I2C_ERROR_OK;
}
i2c_err_t i2cDetachSDA(i2c_t * i2c, int8_t sda)
{
if(i2c == NULL){
return I2C_ERROR_DEV;
}
pinMatrixOutDetach(sda, false, false);
pinMatrixInDetach(I2C_SDA_IDX(i2c->num), false, false);
pinMode(sda, INPUT);
return I2C_ERROR_OK;
}
/*
* index - command index (0 to 15)
* op_code - is the command
* byte_num - This register is to store the amounts of data that is read and written. byte_num in RSTART, STOP, END is null.
* ack_val - Each data byte is terminated by an ACK bit used to set the bit level.
* ack_exp - This bit is to set an expected ACK value for the transmitter.
* ack_check - This bit is to decide whether the transmitter checks ACK bit. 1 means yes and 0 means no.
* */
void i2cSetCmd(i2c_t * i2c, uint8_t index, uint8_t op_code, uint8_t byte_num, bool ack_val, bool ack_exp, bool ack_check)
{
i2c->dev->command[index].val = 0;
i2c->dev->command[index].ack_en = ack_check;
i2c->dev->command[index].ack_exp = ack_exp;
i2c->dev->command[index].ack_val = ack_val;
i2c->dev->command[index].byte_num = byte_num;
i2c->dev->command[index].op_code = op_code;
}
void i2cResetCmd(i2c_t * i2c){
int i;
for(i=0;i<16;i++){
i2c->dev->command[i].val = 0;
}
}
void i2cResetFiFo(i2c_t * i2c)
{
i2c->dev->fifo_conf.tx_fifo_rst = 1;
i2c->dev->fifo_conf.tx_fifo_rst = 0;
i2c->dev->fifo_conf.rx_fifo_rst = 1;
i2c->dev->fifo_conf.rx_fifo_rst = 0;
}
i2c_err_t i2cWrite(i2c_t * i2c, uint16_t address, bool addr_10bit, uint8_t * data, uint8_t len, bool sendStop)
{
int i;
uint8_t index = 0;
uint8_t dataLen = len + (addr_10bit?2:1);
address = (address << 1);
if(i2c == NULL){
return I2C_ERROR_DEV;
}
I2C_MUTEX_LOCK();
while(dataLen) {
uint8_t willSend = (dataLen > 32)?32:dataLen;
uint8_t dataSend = willSend;
i2cResetFiFo(i2c);
i2cResetCmd(i2c);
//Clear Interrupts
i2c->dev->int_clr.val = 0xFFFFFFFF;
//CMD START
i2cSetCmd(i2c, 0, I2C_CMD_RSTART, 0, false, false, false);
//CMD WRITE(ADDRESS + DATA)
if(!index) {
i2c->dev->fifo_data.data = address & 0xFF;
dataSend--;
if(addr_10bit) {
i2c->dev->fifo_data.data = (address >> 8) & 0xFF;
dataSend--;
}
}
i = 0;
while(i<dataSend) {
i++;
i2c->dev->fifo_data.val = data[index++];
while(i2c->dev->status_reg.tx_fifo_cnt < i);
}
i2cSetCmd(i2c, 1, I2C_CMD_WRITE, willSend, false, false, true);
dataLen -= willSend;
//CMD STOP or CMD END if there is more data
if(dataLen || !sendStop) {
i2cSetCmd(i2c, 2, I2C_CMD_END, 0, false, false, false);
} else if(sendStop) {
i2cSetCmd(i2c, 2, I2C_CMD_STOP, 0, false, false, false);
}
//START Transmission
i2c->dev->ctr.trans_start = 1;
//WAIT Transmission
uint32_t startAt = millis();
while(1) {
//have been looping for too long
if((millis() - startAt)>50){
//log_e("Timeout! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_BUS;
}
//Bus failed (maybe check for this while waiting?
if(i2c->dev->int_raw.arbitration_lost) {
//log_e("Bus Fail! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_BUS;
}
//Bus timeout
if(i2c->dev->int_raw.time_out) {
//log_e("Bus Timeout! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_TIMEOUT;
}
//Transmission did not finish and ACK_ERR is set
if(i2c->dev->int_raw.ack_err) {
//log_w("Ack Error! Addr: %x", address >> 1);
while(i2c->dev->status_reg.bus_busy);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_ACK;
}
if((sendStop && i2c->dev->command[2].done) || !i2c->dev->status_reg.bus_busy){
break;
}
}
}
I2C_MUTEX_UNLOCK();
return I2C_ERROR_OK;
}
i2c_err_t i2cRead(i2c_t * i2c, uint16_t address, bool addr_10bit, uint8_t * data, uint8_t len, bool sendStop)
{
address = (address << 1) | 1;
uint8_t addrLen = (addr_10bit?2:1);
uint8_t index = 0;
uint8_t cmdIdx;
uint8_t willRead;
if(i2c == NULL){
return I2C_ERROR_DEV;
}
I2C_MUTEX_LOCK();
i2cResetFiFo(i2c);
i2cResetCmd(i2c);
//CMD START
i2cSetCmd(i2c, 0, I2C_CMD_RSTART, 0, false, false, false);
//CMD WRITE ADDRESS
i2c->dev->fifo_data.val = address & 0xFF;
if(addr_10bit) {
i2c->dev->fifo_data.val = (address >> 8) & 0xFF;
}
i2cSetCmd(i2c, 1, I2C_CMD_WRITE, addrLen, false, false, true);
while(len) {
cmdIdx = (index)?0:2;
willRead = (len > 32)?32:(len-1);
if(cmdIdx){
i2cResetFiFo(i2c);
}
if(willRead){
i2cSetCmd(i2c, cmdIdx++, I2C_CMD_READ, willRead, false, false, false);
}
if((len - willRead) > 1) {
i2cSetCmd(i2c, cmdIdx++, I2C_CMD_END, 0, false, false, false);
} else {
willRead++;
i2cSetCmd(i2c, cmdIdx++, I2C_CMD_READ, 1, true, false, false);
if(sendStop) {
i2cSetCmd(i2c, cmdIdx++, I2C_CMD_STOP, 0, false, false, false);
}
}
//Clear Interrupts
i2c->dev->int_clr.val = 0xFFFFFFFF;
//START Transmission
i2c->dev->ctr.trans_start = 1;
//WAIT Transmission
uint32_t startAt = millis();
while(1) {
//have been looping for too long
if((millis() - startAt)>50){
//log_e("Timeout! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_BUS;
}
//Bus failed (maybe check for this while waiting?
if(i2c->dev->int_raw.arbitration_lost) {
//log_e("Bus Fail! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_BUS;
}
//Bus timeout
if(i2c->dev->int_raw.time_out) {
//log_e("Bus Timeout! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_TIMEOUT;
}
//Transmission did not finish and ACK_ERR is set
if(i2c->dev->int_raw.ack_err) {
//log_w("Ack Error! Addr: %x", address >> 1);
I2C_MUTEX_UNLOCK();
return I2C_ERROR_ACK;
}
if(i2c->dev->command[cmdIdx-1].done) {
break;
}
}
int i = 0;
while(i<willRead) {
i++;
data[index++] = i2c->dev->fifo_data.val & 0xFF;
}
len -= willRead;
}
I2C_MUTEX_UNLOCK();
return I2C_ERROR_OK;
}
i2c_err_t i2cSetFrequency(i2c_t * i2c, uint32_t clk_speed)
{
if(i2c == NULL){
return I2C_ERROR_DEV;
}
uint32_t period = (APB_CLK_FREQ/clk_speed) / 2;
uint32_t halfPeriod = period/2;
uint32_t quarterPeriod = period/4;
I2C_MUTEX_LOCK();
//the clock num during SCL is low level
i2c->dev->scl_low_period.period = period;
//the clock num during SCL is high level
i2c->dev->scl_high_period.period = period;
//the clock num between the negedge of SDA and negedge of SCL for start mark
i2c->dev->scl_start_hold.time = halfPeriod;
//the clock num between the posedge of SCL and the negedge of SDA for restart mark
i2c->dev->scl_rstart_setup.time = halfPeriod;
//the clock num after the STOP bit's posedge
i2c->dev->scl_stop_hold.time = halfPeriod;
//the clock num between the posedge of SCL and the posedge of SDA
i2c->dev->scl_stop_setup.time = halfPeriod;
//the clock num I2C used to hold the data after the negedge of SCL.
i2c->dev->sda_hold.time = quarterPeriod;
//the clock num I2C used to sample data on SDA after the posedge of SCL
i2c->dev->sda_sample.time = quarterPeriod;
I2C_MUTEX_UNLOCK();
return I2C_ERROR_OK;
}
uint32_t i2cGetFrequency(i2c_t * i2c)
{
if(i2c == NULL){
return 0;
}
return APB_CLK_FREQ/(i2c->dev->scl_low_period.period+i2c->dev->scl_high_period.period);
}
/*
* mode - 0 = Slave, 1 = Master
* slave_addr - I2C Address
* addr_10bit_en - enable slave 10bit address mode.
* */
i2c_t * i2cInit(uint8_t i2c_num, uint16_t slave_addr, bool addr_10bit_en)
{
if(i2c_num > 1){
return NULL;
}
i2c_t * i2c = &_i2c_bus_array[i2c_num];
#if !CONFIG_DISABLE_HAL_LOCKS
if(i2c->lock == NULL){
i2c->lock = xSemaphoreCreateMutex();
if(i2c->lock == NULL) {
return NULL;
}
}
#endif
if(i2c_num == 0) {
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG,DPORT_I2C_EXT0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,DPORT_I2C_EXT0_RST);
} else {
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG,DPORT_I2C_EXT1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,DPORT_I2C_EXT1_RST);
}
I2C_MUTEX_LOCK();
i2c->dev->ctr.val = 0;
i2c->dev->ctr.ms_mode = (slave_addr == 0);
i2c->dev->ctr.sda_force_out = 1 ;
i2c->dev->ctr.scl_force_out = 1 ;
i2c->dev->ctr.clk_en = 1;
//the max clock number of receiving a data
i2c->dev->timeout.tout = 400000;//clocks max=1048575
//disable apb nonfifo access
i2c->dev->fifo_conf.nonfifo_en = 0;
i2c->dev->slave_addr.val = 0;
if (slave_addr) {
i2c->dev->slave_addr.addr = slave_addr;
i2c->dev->slave_addr.en_10bit = addr_10bit_en;
}
I2C_MUTEX_UNLOCK();
return i2c;
}
void i2cInitFix(i2c_t * i2c){
if(i2c == NULL){
return;
}
I2C_MUTEX_LOCK();
i2cResetFiFo(i2c);
i2cResetCmd(i2c);
i2c->dev->int_clr.val = 0xFFFFFFFF;
i2cSetCmd(i2c, 0, I2C_CMD_RSTART, 0, false, false, false);
i2c->dev->fifo_data.data = 0;
i2cSetCmd(i2c, 1, I2C_CMD_WRITE, 1, false, false, false);
i2cSetCmd(i2c, 2, I2C_CMD_STOP, 0, false, false, false);
i2c->dev->ctr.trans_start = 1;
while(!i2c->dev->command[2].done);
I2C_MUTEX_UNLOCK();
}