arduino-esp32/tools/sdk/include/esp-face/image_util.h

549 lines
22 KiB
C
Raw Normal View History

/*
* ESPRESSIF MIT License
*
* Copyright (c) 2018 <ESPRESSIF SYSTEMS (SHANGHAI) PTE LTD>
*
* Permission is hereby granted for use on ESPRESSIF SYSTEMS products only, in which case,
* it is free of charge, to any person obtaining a copy of this software and associated
* documentation files (the "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#pragma once
#ifdef __cplusplus
extern "C"
{
#endif
#include <stdint.h>
#include <math.h>
#include "mtmn.h"
#define LANDMARKS_NUM (10)
#define MAX_VALID_COUNT_PER_IMAGE (30)
#define DL_IMAGE_MIN(A, B) ((A) < (B) ? (A) : (B))
#define DL_IMAGE_MAX(A, B) ((A) < (B) ? (B) : (A))
#define RGB565_MASK_RED 0xF800
#define RGB565_MASK_GREEN 0x07E0
#define RGB565_MASK_BLUE 0x001F
typedef enum
{
BINARY, /*!< binary */
} en_threshold_mode;
typedef struct
{
fptp_t landmark_p[LANDMARKS_NUM]; /*!< landmark struct */
} landmark_t;
typedef struct
{
fptp_t box_p[4]; /*!< box struct */
} box_t;
typedef struct tag_box_list
{
uint8_t *category; /*!< The category of the corresponding box */
fptp_t *score; /*!< The confidence score of the class corresponding to the box */
box_t *box; /*!< Anchor boxes or predicted boxes*/
landmark_t *landmark; /*!< The landmarks corresponding to the box */
int len; /*!< The num of the boxes */
} box_array_t;
typedef struct tag_image_box
{
struct tag_image_box *next; /*!< Next image_box_t */
uint8_t category;
fptp_t score; /*!< The confidence score of the class corresponding to the box */
box_t box; /*!< Anchor boxes or predicted boxes */
box_t offset; /*!< The predicted anchor-based offset */
landmark_t landmark; /*!< The landmarks corresponding to the box */
} image_box_t;
typedef struct tag_image_list
{
image_box_t *head; /*!< The current head of the image_list */
image_box_t *origin_head; /*!< The original head of the image_list */
int len; /*!< Length of the image_list */
} image_list_t;
/**
* @brief Get the width and height of the box.
*
* @param box Input box
* @param w Resulting width of the box
* @param h Resulting height of the box
*/
static inline void image_get_width_and_height(box_t *box, float *w, float *h)
{
*w = box->box_p[2] - box->box_p[0] + 1;
*h = box->box_p[3] - box->box_p[1] + 1;
}
/**
* @brief Get the area of the box.
*
* @param box Input box
* @param area Resulting area of the box
*/
static inline void image_get_area(box_t *box, float *area)
{
float w, h;
image_get_width_and_height(box, &w, &h);
*area = w * h;
}
/**
* @brief calibrate the boxes by offset
*
* @param image_list Input boxes
* @param image_height Height of the original image
* @param image_width Width of the original image
*/
static inline void image_calibrate_by_offset(image_list_t *image_list, int image_height, int image_width)
{
for (image_box_t *head = image_list->head; head; head = head->next)
{
float w, h;
image_get_width_and_height(&(head->box), &w, &h);
head->box.box_p[0] = DL_IMAGE_MAX(0, head->box.box_p[0] + head->offset.box_p[0] * w);
head->box.box_p[1] = DL_IMAGE_MAX(0, head->box.box_p[1] + head->offset.box_p[1] * w);
head->box.box_p[2] += head->offset.box_p[2] * w;
if (head->box.box_p[2] > image_width)
{
head->box.box_p[2] = image_width - 1;
head->box.box_p[0] = image_width - w;
}
head->box.box_p[3] += head->offset.box_p[3] * h;
if (head->box.box_p[3] > image_height)
{
head->box.box_p[3] = image_height - 1;
head->box.box_p[1] = image_height - h;
}
}
}
/**
* @brief calibrate the landmarks
*
* @param image_list Input landmarks
*/
static inline void image_landmark_calibrate(image_list_t *image_list)
{
for (image_box_t *head = image_list->head; head; head = head->next)
{
float w, h;
image_get_width_and_height(&(head->box), &w, &h);
head->landmark.landmark_p[0] = head->box.box_p[0] + head->landmark.landmark_p[0] * w;
head->landmark.landmark_p[1] = head->box.box_p[1] + head->landmark.landmark_p[1] * h;
head->landmark.landmark_p[2] = head->box.box_p[0] + head->landmark.landmark_p[2] * w;
head->landmark.landmark_p[3] = head->box.box_p[1] + head->landmark.landmark_p[3] * h;
head->landmark.landmark_p[4] = head->box.box_p[0] + head->landmark.landmark_p[4] * w;
head->landmark.landmark_p[5] = head->box.box_p[1] + head->landmark.landmark_p[5] * h;
head->landmark.landmark_p[6] = head->box.box_p[0] + head->landmark.landmark_p[6] * w;
head->landmark.landmark_p[7] = head->box.box_p[1] + head->landmark.landmark_p[7] * h;
head->landmark.landmark_p[8] = head->box.box_p[0] + head->landmark.landmark_p[8] * w;
head->landmark.landmark_p[9] = head->box.box_p[1] + head->landmark.landmark_p[9] * h;
}
}
/**
* @brief Convert a rectangular box into a square box
*
* @param boxes Input box
* @param width Width of the orignal image
* @param height height of the orignal image
*/
static inline void image_rect2sqr(box_array_t *boxes, int width, int height)
{
for (int i = 0; i < boxes->len; i++)
{
box_t *box = &(boxes->box[i]);
int x1 = round(box->box_p[0]);
int y1 = round(box->box_p[1]);
int x2 = round(box->box_p[2]);
int y2 = round(box->box_p[3]);
int w = x2 - x1 + 1;
int h = y2 - y1 + 1;
int l = DL_IMAGE_MAX(w, h);
box->box_p[0] = DL_IMAGE_MAX(round(DL_IMAGE_MAX(0, x1) + 0.5 * (w - l)), 0);
box->box_p[1] = DL_IMAGE_MAX(round(DL_IMAGE_MAX(0, y1) + 0.5 * (h - l)), 0);
box->box_p[2] = box->box_p[0] + l - 1;
if (box->box_p[2] > width)
{
box->box_p[2] = width - 1;
box->box_p[0] = width - l;
}
box->box_p[3] = box->box_p[1] + l - 1;
if (box->box_p[3] > height)
{
box->box_p[3] = height - 1;
box->box_p[1] = height - l;
}
}
}
/**@{*/
/**
* @brief Convert RGB565 image to RGB888 image
*
* @param in Input RGB565 image
* @param dst Resulting RGB888 image
*/
static inline void rgb565_to_888(uint16_t in, uint8_t *dst)
{ /*{{{*/
in = (in & 0xFF) << 8 | (in & 0xFF00) >> 8;
dst[2] = (in & RGB565_MASK_BLUE) << 3; // blue
dst[1] = (in & RGB565_MASK_GREEN) >> 3; // green
dst[0] = (in & RGB565_MASK_RED) >> 8; // red
// dst[0] = (in & 0x1F00) >> 5;
// dst[1] = ((in & 0x7) << 5) | ((in & 0xE000) >> 11);
// dst[2] = in & 0xF8;
} /*}}}*/
static inline void rgb565_to_888_q16(uint16_t in, int16_t *dst)
{ /*{{{*/
in = (in & 0xFF) << 8 | (in & 0xFF00) >> 8;
dst[2] = (in & RGB565_MASK_BLUE) << 3; // blue
dst[1] = (in & RGB565_MASK_GREEN) >> 3; // green
dst[0] = (in & RGB565_MASK_RED) >> 8; // red
// dst[0] = (in & 0x1F00) >> 5;
// dst[1] = ((in & 0x7) << 5) | ((in & 0xE000) >> 11);
// dst[2] = in & 0xF8;
} /*}}}*/
/**@}*/
/**
* @brief Convert RGB888 image to RGB565 image
*
* @param in Resulting RGB565 image
* @param r The red channel of the Input RGB888 image
* @param g The green channel of the Input RGB888 image
* @param b The blue channel of the Input RGB888 image
*/
static inline void rgb888_to_565(uint16_t *in, uint8_t r, uint8_t g, uint8_t b)
{ /*{{{*/
uint16_t rgb565 = 0;
rgb565 = ((r >> 3) << 11);
rgb565 |= ((g >> 2) << 5);
rgb565 |= (b >> 3);
rgb565 = (rgb565 & 0xFF) << 8 | (rgb565 & 0xFF00) >> 8;
*in = rgb565;
} /*}}}*/
/**
* @brief Filter out the resulting boxes whose confidence score is lower than the threshold and convert the boxes to the actual boxes on the original image.((x, y, w, h) -> (x1, y1, x2, y2))
*
* @param score Confidence score of the boxes
* @param offset The predicted anchor-based offset
* @param landmark The landmarks corresponding to the box
* @param width Height of the original image
* @param height Width of the original image
* @param anchor_number Anchor number of the detection output feature map
* @param anchors_size The anchor size
* @param score_threshold Threshold of the confidence score
* @param stride
* @param resized_height_scale
* @param resized_width_scale
* @param do_regression
* @return image_list_t*
*/
image_list_t *image_get_valid_boxes(fptp_t *score,
fptp_t *offset,
fptp_t *landmark,
int width,
int height,
int anchor_number,
int *anchors_size,
fptp_t score_threshold,
int stride,
fptp_t resized_height_scale,
fptp_t resized_width_scale,
bool do_regression);
/**
* @brief Sort the resulting box lists by their confidence score.
*
* @param image_sorted_list The sorted box list.
* @param insert_list The box list that have not been sorted.
*/
void image_sort_insert_by_score(image_list_t *image_sorted_list, const image_list_t *insert_list);
/**
* @brief Run NMS algorithm
*
* @param image_list The input boxes list
* @param nms_threshold NMS threshold
* @param same_area The flag of boxes with same area
*/
void image_nms_process(image_list_t *image_list, fptp_t nms_threshold, int same_area);
/**
* @brief Resize an image to half size
*
* @param dimage The output image
* @param dw Width of the output image
* @param dh Height of the output image
* @param dc Channel of the output image
* @param simage Source image
* @param sw Width of the source image
* @param sc Channel of the source image
*/
void image_zoom_in_twice(uint8_t *dimage,
int dw,
int dh,
int dc,
uint8_t *simage,
int sw,
int sc);
/**
* @brief Resize the image in RGB888 format via bilinear interpolation
*
* @param dst_image The output image
* @param src_image Source image
* @param dst_w Width of the output image
* @param dst_h Height of the output image
* @param dst_c Channel of the output image
* @param src_w Width of the source image
* @param src_h Height of the source image
*/
void image_resize_linear(uint8_t *dst_image, uint8_t *src_image, int dst_w, int dst_h, int dst_c, int src_w, int src_h);
/**
* @brief Crop rotate and zoom the image in RGB888 format,
*
* @param corp_image The output image
* @param src_image Source image
* @param rotate_angle Rotate angle
* @param ratio scaling ratio
* @param center Center of rotation
*/
void image_cropper(uint8_t *corp_image, uint8_t *src_image, int dst_w, int dst_h, int dst_c, int src_w, int src_h, float rotate_angle, float ratio, float *center);
/**
* @brief Convert the rgb565 image to the rgb888 image
*
* @param m The output rgb888 image
* @param bmp The input rgb565 image
* @param count Total pixels of the rgb565 image
*/
void image_rgb565_to_888(uint8_t *m, uint16_t *bmp, int count);
/**
* @brief Convert the rgb888 image to the rgb565 image
*
* @param bmp The output rgb565 image
* @param m The input rgb888 image
* @param count Total pixels of the rgb565 image
*/
void image_rgb888_to_565(uint16_t *bmp, uint8_t *m, int count);
/**
* @brief draw rectangle on the rgb565 image
*
* @param buf Input image
* @param boxes Rectangle Boxes
* @param width Width of the input image
*/
void draw_rectangle_rgb565(uint16_t *buf, box_array_t *boxes, int width);
/**
* @brief draw rectangle on the rgb888 image
*
* @param buf Input image
* @param boxes Rectangle Boxes
* @param width Width of the input image
*/
void draw_rectangle_rgb888(uint8_t *buf, box_array_t *boxes, int width);
/**
* @brief Get the pixel difference of two images
*
* @param dst The output pixel difference
* @param src1 Input image 1
* @param src2 Input image 2
* @param count Total pixels of the input image
*/
void image_abs_diff(uint8_t *dst, uint8_t *src1, uint8_t *src2, int count);
/**
* @brief Binarize an image to 0 and value.
*
* @param dst The output image
* @param src Source image
* @param threshold Threshold of binarization
* @param value The value of binarization
* @param count Total pixels of the input image
* @param mode Threshold mode
*/
void image_threshold(uint8_t *dst, uint8_t *src, int threshold, int value, int count, en_threshold_mode mode);
/**
* @brief Erode the image
*
* @param dst The output image
* @param src Source image
* @param src_w Width of the source image
* @param src_h Height of the source image
* @param src_c Channel of the source image
*/
void image_erode(uint8_t *dst, uint8_t *src, int src_w, int src_h, int src_c);
typedef float matrixType;
typedef struct
{
int w; /*!< width */
int h; /*!< height */
matrixType **array; /*!< array */
} Matrix;
/**
* @brief Allocate a 2d matrix
*
* @param h Height of matrix
* @param w Width of matrix
* @return Matrix* 2d matrix
*/
Matrix *matrix_alloc(int h, int w);
/**
* @brief Free a 2d matrix
*
* @param m 2d matrix
*/
void matrix_free(Matrix *m);
/**
* @brief Get the similarity matrix of similarity transformation
*
* @param srcx Source x coordinates
* @param srcy Source y coordinates
* @param dstx Destination x coordinates
* @param dsty Destination y coordinates
* @param num The number of the coordinates
* @return Matrix* The resulting transformation matrix
*/
Matrix *get_similarity_matrix(float *srcx, float *srcy, float *dstx, float *dsty, int num);
/**
* @brief Get the affine transformation matrix
*
* @param srcx Source x coordinates
* @param srcy Source y coordinates
* @param dstx Destination x coordinates
* @param dsty Destination y coordinates
* @return Matrix* The resulting transformation matrix
*/
Matrix *get_affine_transform(float *srcx, float *srcy, float *dstx, float *dsty);
/**
* @brief Applies an affine transformation to an image
*
* @param img Input image
* @param crop Dst output image that has the size dsize and the same type as src
* @param M Affine transformation matrix
*/
void warp_affine(dl_matrix3du_t *img, dl_matrix3du_t *crop, Matrix *M);
/**
* @brief Resize the image in RGB888 format via bilinear interpolation, and quantify the output image
*
* @param dst_image Quantized output image
* @param src_image Input image
* @param dst_w Width of the output image
* @param dst_h Height of the output image
* @param dst_c Channel of the output image
* @param src_w Width of the input image
* @param src_h Height of the input image
* @param shift Shift parameter of quantization.
*/
void image_resize_linear_q(qtp_t *dst_image, uint8_t *src_image, int dst_w, int dst_h, int dst_c, int src_w, int src_h, int shift);
/**
* @brief Preprocess the input image of object detection model. The process is like this: resize -> normalize -> quantify
*
* @param image Input image, RGB888 format.
* @param input_w Width of the input image.
* @param input_h Height of the input image.
* @param target_size Target size of the model input image.
* @param exponent Exponent of the quantized model input image.
* @param process_mode Process mode. 0: resize with padding to keep height == width. 1: resize without padding, height != width.
* @return dl_matrix3dq_t* The resulting preprocessed image.
*/
dl_matrix3dq_t *image_resize_normalize_quantize(uint8_t *image, int input_w, int input_h, int target_size, int exponent, int process_mode);
/**
* @brief Resize the image in RGB565 format via mean neighbour interpolation, and quantify the output image
*
* @param dimage Quantized output image.
* @param simage Input image.
* @param dw Width of the allocated output image memory.
* @param dc Channel of the allocated output image memory.
* @param sw Width of the input image.
* @param sh Height of the input image.
* @param tw Target width of the output image.
* @param th Target height of the output image.
* @param shift Shift parameter of quantization.
*/
void image_resize_shift_fast(qtp_t *dimage, uint16_t *simage, int dw, int dc, int sw, int sh, int tw, int th, int shift);
/**
* @brief Resize the image in RGB565 format via nearest neighbour interpolation, and quantify the output image
*
* @param dimage Quantized output image.
* @param simage Input image.
* @param dw Width of the allocated output image memory.
* @param dc Channel of the allocated output image memory.
* @param sw Width of the input image.
* @param sh Height of the input image.
* @param tw Target width of the output image.
* @param th Target height of the output image.
* @param shift Shift parameter of quantization.
*/
void image_resize_nearest_shift(qtp_t *dimage, uint16_t *simage, int dw, int dc, int sw, int sh, int tw, int th, int shift);
/**
* @brief Crop the image in RGB565 format and resize it to target size, then quantify the output image
*
* @param dimage Quantized output image.
* @param simage Input image.
* @param dw Target size of the output image.
* @param sw Width of the input image.
* @param sh Height of the input image.
* @param x1 The x coordinate of the upper left corner of the cropped area
* @param y1 The y coordinate of the upper left corner of the cropped area
* @param x2 The x coordinate of the lower right corner of the cropped area
* @param y2 The y coordinate of the lower right corner of the cropped area
* @param shift Shift parameter of quantization.
*/
void image_crop_shift_fast(qtp_t *dimage, uint16_t *simage, int dw, int sw, int sh, int x1, int y1, int x2, int y2, int shift);
#ifdef __cplusplus
}
#endif